• Title/Summary/Keyword: Glass Thermal Deformation

Search Result 62, Processing Time 0.023 seconds

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Thermo-mechanical Behavior of WB-PBGA Packages Considering Viscoelastic Material Properties (점탄성 물성치를 고려한 WB-PBGA 패키지의 열-기계적 변형 거동)

  • Kim, Man-Ki;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2012
  • It is known that thermo-mechanical properties of solder material and molding compound in WB-PBGA packages are considerably affected by not only temperature but elapsed time. In this paper, finite element analysis (FEA) taking material nonlinearity into account was performed for more reliable prediction on deformation behavior of a lead-free WB-PBGA package, and the results were compared with experimental results from moire interferometry. Prior to FEA on the WB-PBGA package, it was carried out for two material layers consisting of molding compound and substrate in terms of temperature and time-dependent viscoelastic effects of molding compound. Reliable deformation analysis for temperature change was then accomplished using viscoplastic properties for solder ball and viscoelastic properties for molding compound, and the analysis was also verified with experimental results. The result showed that the deformation of WB-PBGA packages was strongly dependent on material model of molding compound; thus, temperature and time-dependent viscoelastic behavior must be considered for the molding compound analysis. In addition, viscoelastic properties of B-type molding compound having comparatively high glass transition temperature of $135^{\circ}C$ could be recommended for reliable prediction on deformation of SAC lead-free WB-PBGA packages.

Focused-Infrared-Light Assisted Roll-to-Roll Hot Embossing (Focused Infrared Light를 이용한 롤투롤 핫엠보싱)

  • Jo, Jeongdai;Kim, Wooseop;Kim, Kwang-Young;Choi, Young-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.199-203
    • /
    • 2017
  • Hot embossing techniques are used to engrave patterns on plastic substrates. Roll based hot embossing uses a heated roll for a continuous process. A heated roll with relief patterns is impressed on a preheated plastic substrate. Then, the substrate is cooled down quickly to prevent thermal shrinkage. The roll speed is normally very slow to ensure substrate temperature increase up to the glass transition temperature. In this paper, we propose a noncontact preheating technique using focused infrared light. The infrared light is focused as a line beam on a plastic substrate using an elliptical mirror just before entering the hot embossing roll. The mid range infrared light efficiently raises the substrate temperature. For preliminary tests, substrate deformation and temperature changes were monitored according to substrate speed. The experiments show that the proposed technique is a good possibility for high speed hot embossing.

Large-scale Simulation for Optimal Design of Composite Curved Piezoelectric Actuator (복합재료 곡면형 자동기의 최적설계를 위한 대규모 수치해석 연구)

  • Chung, Soon-Wan;Hwang, In-Seong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.5-8
    • /
    • 2005
  • In this paper, the electromechanical displacements of curved piezoelectric actuators composed of PZT ceramic and laminated composite materials are calculated based on high performance computing technology and the optimal configuration of composite curved actuator is examined. To accurately predict the local pre-stress in the device due to the mismatch in coefficients of thermal expansion, carbon-epoxy and glass-epoxy as well as PZT ceramic are numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers increases the number of degrees of freedom, large-scale structural analyses are performed through the PEGASUS supercomputer, which is installed in our laboratory. In the first stage, the curved shape of the actuator and the internal stress in each layer are obtained by the cured curvature analysis. Subsequently, the displacement due to the piezoelectric force (which is resulted from applied voltage) is also calculated. The performance of composite curved actuator is investigated by comparing the displacements obtained by the variation of thickness and elastic modulus of laminated composite layers. In order to consider the finite deformation in the first analysis stage and include the pre-stress due to curing process in the second stage, nonlinear finite element analyses are carried out.

  • PDF

An experimental investigation on effect of elevated temperatures on bond strength between externally bonded CFRP and concrete

  • Attari, Behzad;Tavakkolizadeh, Mohammadreza
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.559-569
    • /
    • 2019
  • The bond strength between composite laminates and concrete is a key factor that controls the behavior of concrete members strengthened with fiber reinforced polymer (FRP) sheets, which can be affected by several parameters such as thermal stresses and surface preparation. This article presents the result of an experimental study on the bond strength between FRP sheets and concrete at ambient temperature after specimens had been exposed to elevated temperatures of up to $200^{\circ}C$. For this purpose, 30 specimens of plain concrete with dimensions of $150{\times}150{\times}350mm$ were prepared. Three different conventional surface preparation methods (sandblasting, wire brushing and hole drilling) were considered and compared with a new efficient method (fiber implantation). Deformation field during each experiment was monitored using particle image velocimetry. The results showed that, the specimens which were prepared by conventional surface preparation methods, preserved their bond integrity when exposed to temperature below glass transition temperature of epoxy resin (about $60^{\circ}C$). Beyond this temperature, the bond strength and stiffness decreased significantly (about 50%) in comparison with control specimens. However, the specimens prepared by the proposed method displayed higher bond strengths of up to 32% and 90% at $25^{\circ}C$ and $200^{\circ}C$, respectively.

Characterization of 3D Printed Re-entrant Strips Using Shape Memory Thermoplastic Polyurethane with Various Infill Density (채우기 밀도별 형상 기억 TPU 3D 프린팅 Re-entrant 스트립의 특성 분석)

  • Imjoo Jung;Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.812-824
    • /
    • 2022
  • This study proposes to develop a 3D printed re-entrant(RE) strip by shape memory thermoplastic polyurethane that can be deformed and recovered by thermal stimulation. The most suitable 3D printing infill density condition and temperature condition during shape recovery for mechanical behavior were confirmed. As the poisson's ratio indicated, the higher the recovery temperature, the closer the poisson's ratio to zero and the better the auxetic properties. After recovery testing for five minutes, it appeared that the shape recovery ratio was the highest at 70℃. The temperature range when the shape recovery ratio appeared to be more than 90% was a recovery temperature of more than 50℃ and 60℃ when deformed under a constant load of 100 gf and 300 gf, respectively. This indicated that further deformation occurred after maximum recovery when recovered at a temperature of 80℃, which is above the glass transition temperature range. As for REstrip by infill density, a shape recovery properties of 100% was superior than 50%. Additionally, as the re-entrant structure exhibited a shape recovery ratio of more than 90%, and exhibited auxetic properties. It was confirmed that the infill density condition of 100% and the temperature condition of 70℃ are suitable for REstrips for applying the actuator.

Poly(1,2-propylene glycol adipate) as an Environmentally Friendly Plasticizer for Poly(vinyl chloride) (폴리염화비닐의 친환경 가소제로서 Poly(1,2-propylene glycol adipate))

  • Zhao, Yan;Liang, Hongyu;Wu, Dandan;Bian, Junjia;Hao, Yanping;Zhang, Guibao;Liu, Sanrong;Zhang, Huiliang;Dong, Lisong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.247-255
    • /
    • 2015
  • Poly(1,2-propylene glycol adipate) (PPA) was used as an environmentally friendly plasticizer in flexible poly(vinyl chloride) (PVC). Thermal, mechanical, and rheological properties of the PVC/PPA blends were characterized by differential scanning calorimetry, dynamic mechanical analysis, tensile test, scanning electron microscopy and small amplitude oscillatory shear rheometry. The results showed that PPA lowered the glass transition temperature of PVC. The introduction of PPA could decrease tensile strength and Young's modulus of the PVC/PPA blends; however, elongation-at-break was dramatically increased due to the plastic deformation. The plasticization effect of PPA was also manifested by the decrease of dynamic storage modulus and viscosity in the melt state of the blends. The results indicated that PPA had a good plasticizing effect on PVC.

Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature (온도 상승에 따른 탄소 복합재의 굽힘 강도 저하 평가)

  • Hwang Tae-Kyung;Park Jae-Beom;Lee Sang-Yun;Kim Hyung-Geun;Park Byung-Yeol;Doh Young-Dae
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.20-29
    • /
    • 2005
  • To evaluate the flexural deformation and strength of composite motor case above the glass transition temperature$(T_g),\;170^{\circ}C$, of resin material, a finite element analysis(FEA) model in which material non-linearity and progressive failure mode were considered was proposed. The laminated flexural specimens which have the same lay-up and thickness as the composite motor case were tested by 4-point bending test to verify the validity of FEA model. Also. mechanical properties in high temperature were evaluated to obtain the input values for FEA. Because the material properties related to resin material were highly deteriorated in the temperature range beyond $T_g$, the flexural stiffness and strength of laminated flexural specimen in $200^{\circ}C$ were degraded by also $70\%\;and\;80\%$ in comparison with normal temperature results. Above $T_g$, the failure mode was changed from progressive failure mode initiated by matrix cracking at $90^{\circ}$ ply in bottom side and terminated by delamination at the center line of specimen to fiber compressive breakage mode at top side. From stress analysis, the progressive failure mechanism was well verified and the predicted bending stiffness and strength showed a good agreement with the test results.

Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package (수치해석을 이용한 팬 아웃 웨이퍼 레벨 패키지의 휨 경향 및 신뢰성 연구)

  • Lee, Mi Kyoung;Jeoung, Jin Wook;Ock, Jin Young;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • For mobile application, semiconductor packages are increasingly moving toward high density, miniaturization, lighter and multi-functions. Typical wafer level packages (WLP) is fan-in design, it can not meet high I/O requirement. The fan-out wafer level packages (FOWLPs) with reconfiguration technology have recently emerged as a new WLP technology. In FOWLP, warpage is one of the most critical issues since the thickness of FOWLP is thinner than traditional IC package and warpage of WLP is much larger than the die level package. Warpage affects the throughput and yield of the next manufacturing process as well as wafer handling and fabrication processability. In this study, we investigated the characteristics of warpage and main parameters which affect the warpage deformation of FOWLP using the finite element numerical simulation. In order to minimize the warpage, the characteristics of warpage for various epoxy mold compounds (EMCs) and carrier materials are investigated, and DOE optimization is also performed. In particular, warpage after EMC molding and after carrier detachment process were analyzed respectively. The simulation results indicate that the most influential factor on warpage is CTE of EMC after molding process. EMC material of low CTE and high Tg (glass transition temperature) will reduce the warpage. For carrier material, Alloy42 shows the lowest warpage. Therefore, considering the cost, oxidation and thermal conductivity, Alloy42 or SUS304 is recommend for a carrier material.

Fabrication of Radar Absorbing Shells Made of Hybrid Composites and Evaluation of Radar Cross Section (하이브리드 복합재를 이용한 레이더 흡수 쉘의 제작 및 레이더 단면적 평가)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Ahn, Bierng-Chearl;Park, Seoung-Bae;Won, Myung-Shik
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The avoidance of enemy's radar detection is very important issue in the modem electronic weapon system. Researchers have studied to minimize reflected signals of radar. In this research, two types of radar absorbing structure (RAS), 'C'-type shell and 'U'-type shell, were fabricated using fiber-reinforced composite materials and their radar cross section (RCS) were evaluated. The absorption layer was composed of glass fiber reinforced epoxy and nano size carbon-black, and the reflection layer was fabricated with carbon fiber reinforced epoxy. During their manufacturing process, undesired thermal deformation (so called spring-back) was observed. In order to reduce spring-back, the bending angle of mold was controlled by a series of experiments. The spring-back of parts fabricated by using compensated mold was predicted by finite element analysis (ANSYS). The RCS of RAS shells were measured by compact range and predicted by physical optics method. The measured RCS data was well matched with the predicted data.