• Title/Summary/Keyword: Glass Reinforced Plastic

Search Result 234, Processing Time 0.023 seconds

Mechanical properties of sheet molding compounds (SMC) with different size and contents of ground calcium carbonate (중질 탄산칼슘의 입자크기 및 첨가량 변화에 따라 제조된 시트몰딩 컴파운드(SMC)의 기계적 특징)

  • Lee, Yoonjoo;Koh, Kwang-Woon;Kwon, Woo-Teck;Kim, Younghee;Shin, Dong-Geun
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.84-91
    • /
    • 2017
  • Fiber reinforced plastic (FRP) is a typical plastic composite which is fabricated using fiber reinforcement with resin to represent the high strength properties. The mechanical properties of FRP should be determined by a fibrous material, and the studies about the role of fiber as a reinforcement has been an interested subject, whereas a study along the effect of filler is not so big. However, the filler effect must be considered on the properties of the composite, because the filler influence on the plastic or resin compound which reacts as a matrix material of the composite. Thus, in this work, we studied the filler effect with size and content using $3-6{\mu}m$ of ground calcium carbonate. The specimen was prepared by sheet molding compound (SMC) method, and the mechanical properties were compared with bending strength and tensile strength. As a result, it was confirmed that the size and contents of calcium carbonate affected the strength of composites, and the condition of $2.8{\mu}m$ which was the smallest size condition showed the highest strength.

Experimental Study on the Stress Variation of Concrete Containing F-fiber Extracted from Waste FRP (폐 FRP로부터 분리한 F-섬유를 이용한 콘크리트 강도 특성 변화에 대한 실험적 연구)

  • Yoon, Koo Young;Park, Jong Won;Lee, Seung Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.42-45
    • /
    • 2014
  • Even though to discard the waste FRP (Fiber-Reinforced Plastic) is urgent and problematic, the way to do it has not been efficient. In our project team the FRP have been splitted into some layers which have different physical properties; mat and roving layers. Among those, the roving layer woven like a basket by bundles of glass fibers has been cut into reusable fibers called 'F-fiber'. F-fiber is 1 mm or 3 mm in width and 3 cm in length. It is used in fiber-reinforced concrete (FRC) with 0.5%, 0.7%, 1.0%, or 1.5% of volume ratio. Produced FRC was tested in compressive, tensile, and bending stress in contrast to the without-fiber (standard) concrete and 0.1% polypropylene reinforced concrete (PP-FRC). The tensile and bending stresses are more or less those of PP-FRC. The compressive stress, however, is similar (with 3 mm F-fiber) to or lower (with 1 mm F-fiber) than that of standard concrete. Conclusively the usage of the waste FRC in concrete is advised to be limited to the one where the compressive stress is not much critical.

Experimental Study of Modular Bridge Deck Made of GFRP Composite Materials (GFRP 복합재료를 이용한 조립식 교량 바닥판의 실험 연구)

  • Jeong, Jin Woo;Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.337-346
    • /
    • 2005
  • A composite bridge deck system assembled from a modular profile with double-rectangular cell has been developed for highway bridges. This study is focused on the experimental characterization of flexure performance of pultruded GFRP deck under static loading. Several tests were conducted on single modules and adhesively bonded 2 and 5-modules. The specimen details such as dimensions, material properties and fiber architecture, and experimental set-up and testing procedure have been addressed. It is found that the presented GFRP composite modular deck is very efficient for use in bridges.

Modeling of the Temperature-Dependent and Strain Rate-Dependent Dynamic Behavior of Glass Fiber-Reinforced Polyurethane Foams (유리 섬유 강화 폴리우레탄 폼의 온도 및 변형률 속도 의존 재료 거동 모델링)

  • Lee, Dong-Ju;Shin, Sang-Beom;Kim, Myung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.547-555
    • /
    • 2019
  • The purpose of this study was to establish a numerical model of polyurethane foam (PUF) to simulate the dynamic response and strength of membrane-type Liquefied natural gas (LNG) Cargo containment system (CCS) under the impact load. To do this, initially, the visco-plastic behavior of PUF was characterized by testing the response of the PUF to the impact loads with various strain rates as well as PUF densities at room temperature and at cryogenic conditions. A PUF material model was established using the test results of the material and the FE analysis. To verify the validation of the established material model, simulations were performed for experimental applications, e.g., the dry drop test, and the results of FEA were compared to the experimental results. Based on this comparison, it was found that the dynamic response of PUF in dry drop tests, such as the reaction force and fracture behaviors, could be simulated successfully by the material model proposed in this study.

Prediction of Short-term Behavior of Buried Polyethylene Pipe (지중매설 폴리에틸렌 관의 단기거동 예측)

  • Park, Joonseok;Lee, Young-Geun;Kim, Sunhee;Park, Jung-Hwan;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.907-914
    • /
    • 2012
  • Flexible pipes take advantage of their ability to move, or deflect, under loads without structural damage. Common types of flexible pipes are manufactured from polyethylene (PE), polyvinyl chloride (PVC), steel, glass fiber reinforced thermosetting polymer plastic (GFRP), and aluminum. In this paper, we present the result of an investigation pertaining to the short-term behavior of buried polyethylene pipe. The mechanical properties of the polyethylene pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, vertical ring deflection is measured by the laboratory model test and the finite element analysis (FEA) is also conducted to simulate the short-term behavior of polyethylene pipe buried underground. Based on results from soil-pipe interaction finite element analyses of polyethylene pipe is used to predict the vertical ring deflection and maximum bending strain of polyethylene pipe.

A Study on the Dielectric Characteristics of GFRP in LN2 under Lightning Impulse Voltage According to Pressure (액체질소 내에서 뇌 임펄스전압에 대한 압력별 GFRP의 절연파괴 특성 분석)

  • Hong, Jong-Gi;Heo, Jeong-Il;Nam, Seok-Ho;Kang, Hyoung-Kul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1471-1476
    • /
    • 2012
  • A study on the dielectric characteristics of the Glass Fiber Reinforced Plastic (GFRP) is important for designing a reliable high voltage superconducting machines such as transmission superconducting fault current limiters, superconducting cables, and superconducting transformers. In this paper, dielectric experiments of the GFRP under lightning impulse voltage are conducted in liquid nitrogen($LN_2$) according to various experimental conditions such as the thicknesses of the GFRP, the diameters of electrode systems and the pressures. The dielectric characteristics of the GFRP are analyzed by using a Finite Elements Method(FEM) according to various field utilization factors. It has been reported that the electrical insulation design of the GFRP would be conducted by considering the mean electric field intensity($E_{mean}$) distributed inside the GFRP. In this study, it is found that the dielectric performance of the GFRP could be explained by not only $E_{mean}$ but also the maximum electric field intensity ($E_{max}$). Finally, the empirical formulae of the GFRP to estimate an electrical breakdown voltage at sparkover under the lightning impulse condition are deduced. It is expected that the presented experimental results in this paper are helpful to design electrically reliable high voltage superconducting machines using the GFRP as an insulation material.

Reliability Analysis of GFRP Laminated Composite Cylindrical Shells (GFRP적층복합재료관의 신뢰성 해석)

  • 조효남;이승재
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.117-125
    • /
    • 1993
  • In general, the strength and stiffness of laminated composite cylindrical shells are very sensitive to the variation of slenderness parameters, some coupling-stiffness parameters, lamination angles, stacking sequence and number of layers. In this paper, the effects of these factors on the strength and buckling reliabilities of GFRP laminated cylindrical shells are investigated based on the proposed strength and buckling limit state models. As these factors have various and complicated effects on the strength and buckling reliabilities of GFRP laminated cylindrical shells, the results should be incorporated into the design formula such that optimum design technique and design code which provide uniform consistent reliability for balanced design in practice

  • PDF

Prediction of Ring Deflection GRP Pipe Buried Underground (지중매설 GRP 관의 관변형 예측)

  • Kim, Sun-Hee;Lee, Young-Geun;Joo, Hyung-Jung;Jung, Nam-Jin;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.38-44
    • /
    • 2013
  • Glass fiber reinforced plastic (GRP) pipes buried underground are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. In this paper, we present the result of investigation pertaining to the structural behavior of GRP flexible pipes buried underground. In the investigation of structural behavior such as a ring deflection, experimental and analytical studies are conducted. In addition, vertical ring deflection is measured by the field test and finite element analysis (FEA) is also conducted to simulate behavior of GRP pipe buried underground. Based on the results from the finite element analyses considering soil-pipe interaction the vertical ring deflection behavior of buried GRP pipe is predicted. In addition, analytical and experimental results are compared and discussed.

A Study of Light Weight of Tie Rod End in Auto Supplies (자동차 타이로드 엔드 부품의 경량화에 관한 연구)

  • Kim, Y.S.;Kim, I.K.;Tark, J.H.;Kim, D.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.70-75
    • /
    • 1999
  • This study is for the development of tie rod end, a parts of steering system, that would be changed with plastic material. The position of weld line is founded by the analysis of Mold Flow, computer software with FEM(Finite Element Method). Then new mold is designed by consideration with the locations of weld line. PA66(G/F 35%), PA6(G/F 45%), PET(G/F 45%) and PET(G/F 55%) are tested two types loading conditions for selecting suitable material, the requirement tensile load(more 19600N). PA6(G/F 45%) showed high mechanical properties in this study. And then, tensile strength was compared between conventional metal products and the injection molded products which were reinforced with 33%, 34%, 45%. 60% of glass fiber in matrix material. In the case of, the measured two types of tensile load values are 24500N (Method-1), 21560N (Method-2) and weight is decreased by 50% of conventional one.

  • PDF

Contact Stress Analysis of Stick Type Ignition Coil Jacket PET (Stick Type Ignition Coil Jacket PET의 접촉응력 해석)

  • Kim Yang-Sul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.1-6
    • /
    • 2005
  • Stick type ignition coil is new development that connect directly with ECU(Electronic control unit), without needing a spark plug cable and distributor. Glass-fiber reinforced ploymeric composites provide the desirable properties of high stiffness and strength as well as low specific weight. Stick type ignition coil jacket is using PBT CF30 resin. PBT CF30 resin is a kind of electric insulation which is a superior engineering plastic that is used to prevent the leakage of the electrical current. If PET receive a mistake of design or excessive force when HV terminal oppress on jacket, it can happen to crack. Local stress concentrations occurring on the contact surface, the contact phenomenon becomes a direct cause to the wear and failure of mechanical structures. When it is cracked, it can allow a leakage of the electrical current. So, in this study, we analyze the contact stress to PBT jacket using ANSYS program, when HV terminal oppress on jacket. We suppose PBT to be Jacket and we analyzed contact stress that happens in PET like PBT analysis method. We compared the use of PBT and PET.