• 제목/요약/키워드: Glass Fiber Orientation

검색결과 70건 처리시간 0.026초

나일론66에서 유리섬유의 종류 및 애향에 따른 기계적 물성 연구 (A study on the mechanical properties of reinforced Nylon66 for glass fiber type and its orientation)

  • 유종범;류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.374-377
    • /
    • 2009
  • Glass fiber reinforced nylon has been used in many plastic industries. Mechanical properties of reinforced plastics depend upon types of glass fiber as well as loading of glass fiber. Tensile properties of glass fiber reinforced nylon66 have been studied for different glass fiber types and sizes. Types of glass fibers were circular and flat, and diameters were 7, 10, and 13 micrometers. Orientations of glass fibers in the matrix of nylon66 have been analyzed through X-ray CT. Tensile specimens were prepared by cutting out of square plates of $100{\times}100{\times}3mm$ with different angles such as 0, 45, and $90^{\circ}$ to the flow direction. As the loading of glass fiber increases to 45 wt% tensile strength increases up 2.5 times compare with neat nylon66. Anisotropic tensile strength has been observed and minimum tensile strength was measured in the specimen cut from perpendicular to the flow direction.

  • PDF

유리섬유의 배향에 따른 전기절연용 FRP의 강도특성 (Mechanical Properties of Insulator FRP Rod According to the Winding Orientation of Glass Fiber)

  • 박효열;강동필;한동희;표현동;김태옥
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권6호
    • /
    • pp.321-327
    • /
    • 2000
  • FRP has been used very much as high strength and electrical insulation materials. The fiber contributes the high strength and modulus to the composite. The main roles of the matrix in composite materials like FRP are to transmit and distribute stresses among the individual fibers. The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. In this study, compressive and bending stresses of FRP rods were simulated and measured according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method to give fiber orientation to the FRP. The shear stresses had great effect on the strength of FRP although the stress of parallel direction of FRP was much higher. The tendency of compressive and bending strengths with glass fiber orientation was different each other.

  • PDF

GMT Sheet에서 섬유함유율 및 섬유배향이 인장강도에 미치는 영향 (Effect of Fiber Content and Fiber Orientation on the Tensile Strength in Glass Mat Reinforced Thermoplastic Sheet)

  • 이정주;이동기;심재기;조선형;김진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.186-191
    • /
    • 2004
  • we can say that the increasing range of the value of GMT Sheet's tensile strength in the direction of fiber orientation is getting wider as the fiber content increases. It shows that the value of GMT Sheet's tensile strength in the direction of fiber orientation 90 is similar with the value of pp's intensity when fiber orientation function is J= 0.7, regardless of the fiber content. Tensile strength of GMT Sheet is affected by the fiber orientation distribution more than by the fiber content.

  • PDF

농도법에 의한 GFRP 복합재료의 섬유배향각 분포측정 (Measurement of Fiber Orientation-Angle Distribution of Glass Fiber Reinforced Polymeric Composite Materials by Intensity Method)

  • 김혁;안종윤;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.34-44
    • /
    • 1996
  • In order to examine the accuracy of the intensity method, the fiber orientation-angle distribution of fiber-reinforced polymeric composites is measured using image processing. The fiber orientation function is calculated from the fiber orientation measured by the soft X-ray photograph. Theoretical and experimental results of fiber orientation function are compared for the composites with different fiber contents and fiber orientations. The intensity method is used for the experimental investigation and the measured fiber orientation function is compared to the calculated one. The relations between the measured and the simulated fiber orientation functions $J{\small{M}}$ and $J{\small{S}}$ respectively are identified. For the fiber length of 1.000mm and 2.000mm, it shows that $J{\small{M}}=0.83J{\small{M}}$. However. in general. the value of $J{\small{M}}$ decreases as the fiber length increases. For GFRP composites the relations between $J{\small{M}}$ and theoretical value J show that $J{\small{M}}$=0.73J for short fiber and $J{\small{M}}$=0.81J for long fiber.

  • PDF

Glass Fiber 배향성이 충격 파괴에 미치는 영향: 사출-구조 연성해석 (Effect of Glass Fiber Orientation on Impact Fracture Properties: Coupled Injection Molding & Structural Analysis)

  • 김웅
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.129-135
    • /
    • 2023
  • The use of engineering plastic products in internal combustion engine and electric cars to improve stiffness and reduce weight is increasing significantly. Among various lightweight materials, engineering plastics have significant advantages such as cost reduction, improved productivity, and weight reduction. In particular, engineering plastics containing glass fibers are used to enhance stiffness. However, the stiffness of glass fibers can increase or decrease depending on their orientation. Before developing plastic products, optimal designs are determined through injection molding and structural analysis to enhance product reliability. However, reliable analysis of products with variable stiffnesses caused by anisotropy cannot be achieved via the conventional isotropic structural analysis, which does not consider anisotropy. Therefore, based on the previously reported study "the Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis," this study aims to investigate the structural analysis and degradation mechanisms of various polymers. In particular, this study elucidates the actual mechanism of plastic fracture by analyzing various fracture conditions and their corresponding simulations. Furthermore, the objective of this study is to apply the injection molding and structural coupled analysis mechanism to develop engineering plastic products containing glass fibers. In addition, the study aims to apply and improve the plastic fracture mechanism in actual products by exploring anisotropy and stiffness reduction owing to the unfilled polymer weld line.

와인딩 각도에 따른 FRP의 굽힘강도 (Bending Strength of FRP According to the Winding Orientation of Glass Fiber)

  • 박효열;강동필;한동희;김인성;표현동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.242-245
    • /
    • 2000
  • The fiber contributes the high strength and modulus to the composite. The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. In this study, FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method to give fiber orientation to the FRP. The bending strength and bending stresses of FRP rods were simulated according to the winding orientation of glass fiber. The bending strength of FRP was also evaluated. The results of simulation and evaluation Were compared each other to investigate main stresses which affect the fracture of FRP. The main stresses which had a great effect on the strength of FRP were shear stresses.

  • PDF

Magnetic Contactor Upper Frame 사출성형시 유리섬유 배향에 따른 뒤틀림 변형에 관한 연구 (A study of warpage caused by glass fiber orientation in Injection Molding to Upper Frame of Magnetic Contactor in 85 AF)

  • 박진영;조해용;김길수;황한성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.766-771
    • /
    • 2000
  • As using of insulating material of plastic to industrial electric field, thermoset has been gradually substituted for thermoplastic. But changing the material with crystalline has some problem, which is strength or warpage, Especially getting a strength to endure inner pressure is necessary when arc is occurred. So we use the material that is composed of glass fiber to compensate strength. By the way as the reinforced glass-fiber material is used in injection molding, unstableness of dimension is appeared frequently and it is difficult to know warpage pattern. So this paper will be contributed to know warpage pattern of mold product that is upper frame of magnetic contactor caused by glass-fiber orientation with fixed gate-system, when glass-fiber reinforced material with classification of poly-amide is used in injection molding.

  • PDF

일방향 및 직교형 유리섬유/에폭시 복합재로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동 (Surface Fracture Behaviors of Unidirectional and Cross Ply Glass Fiber/Epoxy Lamina-Coated Glass Plates under a Small-Diameter Steel Ball Impact)

  • 장재영;최낙삼
    • Composites Research
    • /
    • 제22권4호
    • /
    • pp.33-40
    • /
    • 2009
  • 유리섬유/에폭시 복합재료로 피막한 판유리의 표변파괴거동에 대한 섬유방향효과를 미소강구 충격실험을 통해 연구했다. 본 연구에서는 단순소다유리판(soda-lime glass plates), 일방향 유리섬유/에폭시박막 (glass/epoxy lamina ply)을 1층 및 2층 접착, 직교형 유리섬유/에폭시 박막 (2층)을 접착한 4종류의 시편을 사용하였다. 유리판 배면에 스트레인게이지를 부착하여 충격중의 최대 응력과 흡수파괴에너지를 측정하였다. 피막없는 판유리의 경우 충격속도 증가에 따라 링균열, 콘균열, 레이디얼 균열이 충격표면부에서 발생하였다. 복합재료 박막으로 피막한 결과, 소다유리판의 균열은 현저히 감소하였으며 섬유층과 판유리사이의 박리 및 소성변형영역의 방향은 섬유방향으로 진행했다. 최대응력과 흡수파괴에너지를 이용하여 구한 충격 표면파괴지수는 표면저항의 효과적인 평가지수로서 사용될 수 있었다.

사출-구조 연성해석을 통한 Glass Fiber 배향성이 충격 파괴에 미치는 영향 (The Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis)

  • 김웅;김종량
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.35-41
    • /
    • 2017
  • The use of engineering plastics in automotive components is increasing with the trend towards improving the car strength and reducing weight. Among the different choices of materials, engineering plastic emerged as the necessary material for achieving lower costs, reduced weight and improved production efficiency. To produce the automotive parts, it is important to predict defect and validation of injection molding prior to design. Injection molding analysis and structural analysis are widely applied as a part of the design process when developing automotive parts. Injection molding analysis, in particular, involves a highly complicated mechanism that requires deep knowledge of polymer properties as well as an analytic approach different from that used for a general isotropic material when the molded material is used as a structural material. This is because the parts made of polymer have pre-stress factors such as intrinsic deformation and residual stress. The most important factors for injection molded plastic products are injection molding condition and cavity design, taking into account ease of molding, mass production and application. Despite optimal injection molding conditions and cavity design, however, glass fiber orientation is critically linked to strength reduction. The application of injection molding and structural coupled analysis provides a low-cost solution for product molding and structural validation, all prior to the actual molding. The purpose of this study involves the validation, pre-study, and solution of defect in injection-molded polymer automotive parts using the simulation software for injection molding and structural coupled analysis. Finally, this thesis provides validation of an injection molding and structural coupled analytic mechanism that can demonstrate the effect of glass fiber orientation on mechanical strength. Design improvement ideas for the injection molded product of PPS (Poly Phenylene Sulfide)+40% glass fiber are also suggested.

Development of a New On-line fiber Orientation Sensor Based on Dielectric Anisotropy

  • Nagata, Shinichi
    • 펄프종이기술
    • /
    • 제34권5호
    • /
    • pp.49-55
    • /
    • 2002
  • A new method is proposed for the on-line measurement of the fiber orientation of sheet materials. The measurement of fiber orientation is very important in manufacturing paper sheets, non-woven fabrics, and glass sheets, because fiber orientation strongly affects product properties represented by, for example, dimensional stability of paper. A method developed in this research utilizes anisotropy of dielectric constants of sheet materials as a key characteristic to determine the fiber orientation. The new on-line sensor, consisting of 5 microwave dielectric resonators set in different directions, was designed to detect the fiber orientation while paper is running with high speed on a paper machine. This sensor can determine the direction and the degree of fiber orientation from the measured direction of the maximal dielectric constant and its variation, respectively. The fundamental performance of this system was examined by the static measurement of printing grade paper, which gave a satisfactory result. Then, the dynamic measurements were done at a speed of 1,000 m/min by using a high-speed test-coating machine.