• Title/Summary/Keyword: Glass Fiber Composites

Search Result 461, Processing Time 0.026 seconds

Study on the temperature and optical wavelength sensing composites as smart materials (온도 및 광파장을 감지하는 스마트 복합재료에 관한 연구)

  • ;Delbert E. Day;James O. Stoffer
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.439-448
    • /
    • 1996
  • The possibility of application or the transparent BK10 glass fiber/PMMA composites as a temperature-or wavelength-sensors was studied. Measurement of diameter and refractive index for glass fibers to be reinforced to PMMA as a function of drawing speed and temperature was done and the appropriate coating methods and solvent for coupling agent was researched. $T_{max%}$ value at which the maximum transmission for the composites occurs could be controlled to be in $31~50^{\circ}C$ by the processing factors such as fiber diameter, fiber vol%, molecular wt. of PMMA. Furthermore, with different wavelength other than 589.3 nm, the $T_{max%}$ value could be controlled to be in $35~55^{\circ}C$. For the sensibility of wavelength for the composites, there was not a wavelength ($\lamda_{max%}$) showing maximum transmission.

  • PDF

Cure Cycle for Thick Glass/Polyester Composites (두꺼운 유리섬유/폴리에스터 복합재료를 위한 경화 사이클)

  • 김형근;오제훈;이대길
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.33-42
    • /
    • 2001
  • The cure kinetic equation fur 52-glass/polyester prepreg composites was established through DSC (differential scanning calorimetry). Using the established kinetic equation, the temperature distribution of the thick composite was calculated considering the change of heat transfer resistance due to resin impregnation of bleeder plies used. In order to reduce the overheat during cure of thick glass fiber composites, the cure cycle was modified by introducing the cooling and reheating steps. Then the thick glass composites were cured both by the conventional cycle without any cooling or reheating step and the modified cure cycle. The mechanical properties of the thick composites cured by the both cycles were tested by the short beam shear test and the Barcol hardness test, and then their results were compared.

  • PDF

A study on abrasive wear characteristics of side plate of FRP ship (온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.

Durability of Fiber Reinforced Composites under Salt Water Environments (염수환경을 고려한 섬유강화 복합재의 내구성 평가)

  • Yoon Sung-Ho;Hwang Young-Eun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.391-396
    • /
    • 2005
  • Salt water spray test and salt water immersion test were experimentally conducted in order to investigate the durability of fiber reinforced composites under salt water environment. The specimens were made of glass fabric reinforcement and phenolic resin. Mechanical test was performed to obtain mechanical properties such as tensile properties, flexural properties, and shear properties by varying with exposure times. Also dynamic mechanical test and FTIR were conducted to investigate a change in chemical structure as well as thermal analysis properties such as storage shear modulus, loss shear moduls, and tan ${\delta}$. According to the results, salt water environment has effected on mechanical properties and thermal analysis properties and especially the durability of glass fabric/phenolic composites were severely affected on salt water immersion environment rather than salt water spray environment.

  • PDF

Crystallinity and Mechanical Properties of Glass Fiber Reinforced Thermoplastic Composites by Rapid Press Consolidation Technique (Consolidation 방법에 의해 제작된 유리섬유강화 복합재료의 결정성과 기계적성질에 관한 연구)

  • Shin, Ick-Jae;Kim, Dong-Young;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.91-96
    • /
    • 2000
  • Glass fiber reinforced thermoplastic composites were manufactured by Rapid Press Consolidation Technique(RPCT) as functions of temperature, pressure and time in pre-heating, consolidation and solidification sections during the manufacturing processing. It was found that the material property is greatly affected by pre-heating temperature under vacuum, mold temperature and molding pressure. Among them, the temperature In the mold was the most critical factor in determining the mechanical properties and the molded conditions of specimen. The crystallinity of PET matrix was also investigated by differential scanning calorimetry(DSC) measurements for various processing conditions. The level of crystallinity($X_c$) depended strongly on the mold temperature, cooling rate and the type of composite. The difference in $X_c$ is believed to be one of important factors in characterizing the mechanical properties.

  • PDF

Dielectric Properties of Glass Fiber Reinforced Epoxy Composites by Cure under Pressure (가압 겔화법에 의한 에폭시 복합 재료의 유전적 특성)

  • 곽영순;신중홍;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.292-297
    • /
    • 1989
  • To achieve fiber/resin reinforced composites with high quality (void-free, uniform compaction), a basic understanding of the principal factors related to a thermal cycle to cure the matrix and a pressure to compact the system is necessary. In this paper, some dielectric and mechanical properties of glass cloth reinforced epoxy composites are measured as a function of fabrication conditions, where the time that the pressure is applied to the sample during the cure process is controlled. Both the tensile strength and frequency characteristics of the sample are improved significantly when the pressure is applied at the start point of gelling.

  • PDF

Properties of Randomly Oriented Chopped E-glass Reinforced Unsaturated Polyester Based Resin Composite -Effect of Length/Content of E-Glass Fiber and Number of Stacking- (랜덤상태의 E-유리 단섬유 강화 불포화 폴리에스터 기반 수지 복합재료의 물성 - E-유리 단섬유의 길이와 함량 및 적층수의 영향 -)

  • Park, Jin-Myung;Park, Young-Gwang;Lee, Young-Hee;Seo, Dae-Kyung;Lee, Jang-Hun;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.165-174
    • /
    • 2015
  • To develop automobile parts, the unsaturated polyester based matrix resin(PR)/reinforcement(randomly oriented chopped E-glass fiber, GF) composites were prepared using sheet molding compound(SMC) compression molding. The effects of GF length(0.5, 1.0 1.5 and 2.0inch)/content (15, 20, 25, 30wt%) and number of ply(3, 4 and 5) on the specific gravity and mechanical properties of PR/GF composites were investigated in this study. The optimum length of GF was found to be about 1.0inch for achieving improved mechanical properties(tensile strength and initial modulus). The tensile strength and initial modulus of composites increased with increasing GF content up to 30wt%, which is favorable content range for SMC. The specific gravity, tensile strength/initial modulus, compressive strength/modulus, flexural strength/modulus and shear strength increased with increasing the number of ply up to 5, which is the maximum number of ply range for SMC. The effectiveness of ply number increased in the flexural strength > shear strength > compressive strength > tensile strength.

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Characterizing the damage mechanisms in mode II delamination in glass/epoxy composite using acoustic emission

  • Dastjerdi, Parinaz Belalpour;Ahmadi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.545-553
    • /
    • 2018
  • Mode II delamination propagation is an important damage mode in laminated composites and this paper aims to investigate the behavior of this damage in laminated composite materials using acoustic emission (AE) technique. Three different lay-ups of glass/epoxy composites were subjected to mode II delamination propagation and generated AE signals were recorded. In order to investigate the propagation of delamination behavior of these specimens, AE signals were analyzed using Wavelet Packet Transforms (WPT) and Fast Fourier Transform (FFT). In addition, conventional AE analyses were used to enhance understanding of the propagation of delamination damage. The results indicate that different fracture mechanisms were the main cause of the AE signals. The dominant mechanisms in all the specimens were matrix cracking, fiber/matrix debonding and fiber breakage, with varying percentage of the damage mechanisms for each lay-up. Scanning Electron Microscopy (SEM) observations were in accordance to the AE results.

A Case Study of Innovative Engineering Education System by Idea Factory (Development of Temperature-Humidity Control Device for Fiber Storage on Composites) (Idea Factory를 통한 공학교육 혁신 활동 사례 연구 (복합재 섬유 보관용 온·습도 조절 장치 개발))

  • Park, Soo-Jeong;Kim, Yun-Hae
    • Journal of Engineering Education Research
    • /
    • v.20 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • This research is as a case study of innovative engineering education system through idea factory of korea maritime and ocean university and deals with development of temperature-humidity control device (THCD) for fiber storage on composites in viewpoint of problem solving method. Fiber reinforced plastic (FRP) includes many variables on the composite manufacturing process. Above all, the interfacial adhesion between the fiber and the matrix acts as an important thing that decided mechanical property of the FRP, and also it is profoundly linked to external temperature and relative humidity. High void fraction leads to a result in interlaminar fracture. Therefore, in this research, to establish correlation between fiber reinforcement and fiber storage conditions of temperature and relative humidity we developed a THCD for fiber reinforcement. To evaluate performance of the THCD, glass fiber reinforced plastic (GFRP) is made under the extreme conditions each temperature $34^{\circ}C$, relative humidity 98 % and it can be said that there are the change of mechanical properties according to fiber storage conditions. As a result, the THCD showed sufficient possible application for understanding and applied research of composites field in material engineering. Also, we could check that the necessity of introduction of innovative system such as idea factory existed.