• Title/Summary/Keyword: Glass Deformation

Search Result 281, Processing Time 0.027 seconds

An Experimental Study on Static Behaviors of Composite Sandwich Bridge Decks with Hybrid GFRP-Steel Core (하이브리드 GFRP-강재 심재를 갖는 복합샌드위치 교량바닥판의 정적거동에 관한 실험 연구)

  • Ji, Hyo-Seon;Chun, Kyung-Sik;Park, Dae-Yong;Son, Byung-Jik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.12-17
    • /
    • 2011
  • This paper presents the flexural behavior of a hybrid Glass Fiber-Reinforced Polymer(GFRP)-steel decks for use in deteriorated bridge decks replacement. Static load tests were conducted to investigate the structural characteristics of the hybrid FRP-steel deck. The tested deck panel satisfied the design criteria. The failure mode of the hybrid deck was demonstrated ductility with deformation beyond initial yielding. The responses were compared with the ANSYS finite element predictions. It was found that the presented hybrid deck was efficient for use in bridges. The thickness of the hybrid deck may be decreased when compared to that of the all FRP deck with similar flexural rigidity.

Evaluation of energy release rate of composites laminated with finite element method

  • Achache, Habib;Boutabout, Benali;Benzerdjeb, Abdelouahab;Ouinas, Djamel
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.191-204
    • /
    • 2015
  • Control of the mechanical behavior of composite materials and structures under monotonic and dynamic loads for cracks and damage is a vast and complex area of research. The modeling of the different physical phenomena and behavior characteristics of a composite material during deformation play an important role in the structural design. Our study aims to analyze numerically the energy release rate parameter G of a composite laminated plate (glass or boron / epoxy) cross-ply [$+{\alpha}$, $-{\alpha}$] in the presence of a crack between two circular notches under the effect of several parameters such as fiber orientation ${\alpha}$, the crack orientation ${\beta}$, the orientation ${\gamma}$ of the two considered circular notches and the effect of mechanical properties. Our results show clearly that both notches orientation has more effect on G than the cracks and fibers orientations.

A Study on the Uniformity Improvement of Residual Layer of a Large Area Nanoimprint Lithography

  • Kim, Kug-Weon;Noorani, Rafigul I.;Kim, Nam-Woong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.19-23
    • /
    • 2010
  • Nanoimprint lithography (NIL) is one of the most versatile and promising technology for micro/nano-patterning due to its simplicity, high throughput and low cost. Recently, one of the major trends of NIL is large-area patterning. Especially, the research of the application of NIL to TFT-LCD field has been increasing. Technical difficulties to keep the uniformity of the residual layer, however, become severer as the imprinting area increases. In this paper we performed a numerical study for a large area NIL (the $2^nd$ generation TFT-LCD glass substrate ($370{\times}470$ mm)) by using finite element method. First, a simple model considering the surrounding wall was established in order to simulate effectively and reduce the computing time. Then, the volume of fluid (VOF) and grid deformation method were utilized to calculate the free surfaces of the resist flow based on an Eulerian grid system. From the simulation, the velocity fields and the imprinting pressure during the filling process in the NIL were analyzed, and the effect of the surrounding wall and the uniformity of residual layer were investigated.

Comparison of the Viscosity of Ceramic Slurries using a Rotational Rheometer and a Vibrational Viscometer (회전형 레오미터와 진동형 점도계를 이용한 세라믹 슬러리의 점도 비교)

  • Ji, Hye;Lim, Hyung Mi;Chang, Young-Wook;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.542-548
    • /
    • 2012
  • The viscosity of a ceramic slurry depends on the slurry concentration, particle shape and size, hydrodynamic interactions, temperature, shear rate, pre-treatment condition and the method of measurement with the selected equipment. Representative ceramic slurries with low to high viscosity levels are selected from colloidal silica, barium titanate slurry and glass frit paste. Rotational rheometers and vibrational viscometers are used to compare the measured viscosity for various ceramic slurries. The rotational rheometer measured the viscosity according to the change of the shear rate or the rotational speed. On the other hand, the vibrational viscometer measured one point of the viscosity in a fixed vibrational mode. The rotational rheometer allows the measurement of the viscosity of a ceramic paste with a viscosity higher than 100,000 cP, while the vibrational viscometer provides an easy and quick method to measure the viscosity without deformation of the ceramic slurry due to the measurement method. It is necessary to select suitable equipment with which to measure the viscosity depending on the purpose of the measurement.

Sliding Wear Characteristics of the Fe-17Mn Alloy with Various Phases (Fe-17M 합금의 상에 따른 미끄럼 마멸 거동의 변화)

  • Lee J. E.;Kim Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.411-414
    • /
    • 2005
  • It is reported that $\varepsilon$ (HCP) and $\gamma$ (FCC) phases of a Fe-17Mn alloy transform to $\alpha'$ phase, which has BCC structure, under a deformation condition. In this study, we investigated the effect of strain-induced-transformed $\alpha'$ phase on sliding wear of the Fe-17Mn alloy that originally had e and y phases. Wear tests of the materials were carried out using a pin-on-disk wear tester at various loads of 0.5N-50N under a constant sliding speed condition of 0.38m/s against glass $(83\%\;SiO_2)$ beads. The sliding distance and radius were loom and 9 mm, respectively. Wear rate of the Fe-17Mn alloy was calculated by dividing the weight loss, measured to the accuracy of $10^{-5}g$ by the measured specific gravity and sliding distance. Worn surface and wear debris of the specimens were examined using an SEM and XRD. During the wear, $\alpha'$ phase of BCC structure was formed by strain-induced transformation when the applied wear load exceeded critical values. The $\alpha'$ phase formed by the strain induced transformation increased the wear rate of the Fe-17Mn alloy.

  • PDF

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

An experimental investigation on effect of elevated temperatures on bond strength between externally bonded CFRP and concrete

  • Attari, Behzad;Tavakkolizadeh, Mohammadreza
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.559-569
    • /
    • 2019
  • The bond strength between composite laminates and concrete is a key factor that controls the behavior of concrete members strengthened with fiber reinforced polymer (FRP) sheets, which can be affected by several parameters such as thermal stresses and surface preparation. This article presents the result of an experimental study on the bond strength between FRP sheets and concrete at ambient temperature after specimens had been exposed to elevated temperatures of up to $200^{\circ}C$. For this purpose, 30 specimens of plain concrete with dimensions of $150{\times}150{\times}350mm$ were prepared. Three different conventional surface preparation methods (sandblasting, wire brushing and hole drilling) were considered and compared with a new efficient method (fiber implantation). Deformation field during each experiment was monitored using particle image velocimetry. The results showed that, the specimens which were prepared by conventional surface preparation methods, preserved their bond integrity when exposed to temperature below glass transition temperature of epoxy resin (about $60^{\circ}C$). Beyond this temperature, the bond strength and stiffness decreased significantly (about 50%) in comparison with control specimens. However, the specimens prepared by the proposed method displayed higher bond strengths of up to 32% and 90% at $25^{\circ}C$ and $200^{\circ}C$, respectively.

Experimental and analytical study on continuous GFRP-concrete decks with steel bars

  • Tong, Zhaojie;Chen, Yiyan;Huang, Qiao;Song, Xiaodong;Luo, Bingqing;Xu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.737-749
    • /
    • 2020
  • A hybrid bridge deck is proposed, which includes steel bars, concrete and glass-fiber-reinforced-polymer (GFRP) plates with channel sections. The steel bar in the negative moment region can increase the flexural stiffness, improve the ductility, and reduce the GFRP ratio. Three continuous decks with different steel bar ratios and a simply supported deck were fabricated and tested to study the mechanical performance. The failure mode, deflection, strain distribution, cracks and support reaction were tested and discussed. The steel bar improves the mechanical performance of continuous decks, and a theoretical method is proposed to predict the deformation and the shear capacity. The experimental results show that all specimens failed with shear failure in the positive moment region. The increase of steel bar ratio in the negative moment region can achieve an enhancement in the flexural stiffness and reduce the deflection without increasing GFRP. Moreover, the continuous deck can achieve a yield load, and the negative moment can be carried by GFRP plates after the steel bar yields. Finally, a nonlinear analytical method for the deflection calculation was proposed and verified, with considering the moment redistribution, non-cracked sections and nonlinearity of material. In addition, a simplified calculation method was proposed to predict the shear capacity of GFRP-concrete decks.

Verification of Applicability of Hybrid CFFT Pile for Numerical Analysis (수치해석을 통한 FRP 콘크리트 합성말뚝 적용성 평가)

  • Kim, HongTaek;Lee, MyungJae;Park, JeeWoong;Yoon, SoonJong;Han, YeonJin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.59-67
    • /
    • 2011
  • The interaction of the ground deformation and composite piles, which is made of fiber glass, was analyzed for the effective pile application under vertical loads. This study was performed to conduct experimentation test and propose the material characteristics of the new type concrete injection circular FRP pile for the improvement of the defect of CFFT-Concrete composition piles and FRP-Concrete composition piles(FRP reinforced column direction). Additionally, in order to analyze the behaviour characteristics of composite pile and steel pile the numerical analyses were carried out.

Contact Resistance and Thermal Cycling Reliability of the Flip-Chip Joints Processed with Cu-Sn Mushroom Bumps (Cu-Sn 머쉬룸 범프를 이용한 플립칩 접속부의 접속저항과 열 싸이클링 신뢰성)

  • Lim, Su-Kyum;Choi, Jin-Won;Kim, Young-Ho;Oh, Tae-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.585-592
    • /
    • 2008
  • Flip-chip bonding using Cu-Sn mushroom bumps composed of Cu pillar and Sn cap was accomplished, and the contact resistance and the thermal cycling reliability of the Cu-Sn mushroom bump joints were compared with those of the Sn planar bump joints. With flip-chip process at a same bonding stress, both the Cu-Sn mushroom bump joints and the Sn planar bump joints exhibited an almost identical average contact resistance. With increasing a bonding stress from 32 MPa to 44MPa, the average contact resistances of the Cu-Sn mushroom bump joints and the Sn planar bump joints became reduced from $30m{\Omega}/bump$ to $25m{\Omega}/bump$ due to heavier plastic deformation of the bumps. The Cu-Sn mushroom bump joints exhibited a superior thermal cycling reliability to that of the Sn planar bump joints at a bonding stress of 32 MPa. While the contact resistance characteristics of the Cu-Sn mushroom bump joints were not deteriorated even after 1000 thermal cycles ranging between $-40^{\circ}C$ and $80^{\circ}C$, the contact resistance of the Sn planar bump joints substantially increased with thermal cycling.