• 제목/요약/키워드: Ginsenosides(PPT, PPD), Rg$_1$ Rb$_1$)

검색결과 7건 처리시간 0.027초

선천성 고혈압 랫드에서 ginsenosides에 의한 내피의존성수축의 억제작용 (Ginsenosides Inhibit Endothelium - dependent Contraction in the Spontaneously Hypertensive Rat Aorta isn vitro)

  • 김낙두;최원선
    • Journal of Ginseng Research
    • /
    • 제21권2호
    • /
    • pp.125-132
    • /
    • 1997
  • Our previous study showed that in vivo treatment of spontaneously hypertensive rats (SHR) with protopanaxatriol ginsenosides (PPT) reduces the blood pressure and inhibits the con- tractions induced by endothelium-derived contracting factor (prostaglandin endoperoxide ($PGH_2$) and superoxide anion) in aorta isolated from SHR. The aim of the present study is to examine whether PPT improves endothelial functions in the isolated thoracic aorta of SHR in vitro. Treatments of aortic rings with PPT, purified ginsenoside $Rg_1$ ($Rg_1$) or indomethacin normalized endotheliuln-dependent relaxation to acetylcholine, but not with protopanaxadiol ginsenosides (PPD) and purified ginsenoside Rb1 (Rb1). The effects of PPT were dose-dependent. PGH,- and oxygen free radical-inducted contractions in rat aorta without endothelium were inhibited by PPT or $Rg_1$, but not by PPD or $Rb_1$. Contractions induced by PGF2$\alpha$, U-46619, a stable thromboxane A2 agonist or KCI (60 mM) were not inhibited by PPT, $Rg_1$ or $Rb_1$. These findings demonstrate that PPT but not PPD scavenges the oxygen-derived free radicals and/or antagonize the effects of $PGH_2$ in the vascular smooth muscle and may explain the hypotensive effect of ginseng in the SHR.

  • PDF

Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels

  • You, Long;Cha, Seunghwa;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.711-721
    • /
    • 2022
  • The immune system is one of the most important parts of the human body and immunomodulation is the major function of the immune system. In response to outside pathogens or high inflammation, the immune system is stimulated or suppressed. Thus, identifying effective and potent immunostimulants or immunosuppressants is critical. Ginsenosides are a type of steroid saponin derived from ginseng. Most are harmless to the body and even have tonic effects. In this review, we mainly focus on the immunostimulatory and immunosuppressive roles of two types ginsenosides: the protopanaxadiol (PPD)-type and protopanaxatriol (PPT)-type. PPT-type ginsenosides include Rg1, Rg2, Rh4, Re and notoginsenoside R1, and PPD-type ginsenosides include Rg3, Rh2, Rb1, Rb2, Rc, Rd, compound K (CK) and PPD, which activate the immune responses. In addition, Rg1 and Rg6 belong to PPT-type ginsenosides and together with Rg3, Rb1, Rd, CK show immunosuppressive properties. Current explorations of ginsenosides in immunological areas are in the preliminary stages. Therefore, this review may provide some novel ideas to researchers who study the immunoregulatory roles of ginsenosides.

Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)

  • Park, Seong-Bum;Chun, Ju-Hyeon;Ban, Yong-Wook;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.47-54
    • /
    • 2016
  • Background: The roots of Panax ginseng contain noble tetracyclic triterpenoid saponins derived from dammarenediol-II. Dammarene-type ginsenosides are classified into the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups based on their triterpene aglycone structures. Two cytochrome P450 (CYP) genes (CYP716A47 and CYP716A53v2) are critical for the production of PPD and PPT aglycones, respectively. CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes PPT production from PPD in P. ginseng. Methods: We constructed transgenic P. ginseng lines overexpressing or silencing (via RNA interference) the CYP716A53v2 gene and analyzed changes in their ginsenoside profiles. Result: Overexpression of CYP716A53v2 led to increased accumulation of CYP716A53v2 mRNA in all transgenic roots compared to nontransgenic roots. Conversely, silencing of CYP716A53v2 mRNA in RNAi transgenic roots resulted in reduced CYP716A53v2 transcription. HPLC analysis revealed that transgenic roots overexpressing CYP716A53v2 contained higher levels of PPT-group ginsenosides ($Rg_1$, Re, and Rf) but lower levels of PPD-group ginsenosides (Rb1, Rc, $Rb_2$, and Rd). By contrast, RNAi transgenic roots contained lower levels of PPT-group compounds and higher levels of PPD-group compounds. Conclusion: The production of PPD- and PPT-group ginsenosides can be altered by changing the expression of CYP716A53v2 in transgenic P. ginseng. The biological activities of PPD-group ginsenosides are known to differ from those of the PPT group. Thus, increasing or decreasing the levels of PPT-group ginsenosides in transgenic P. ginseng may yield new medicinal uses for transgenic P. ginseng.

Determination of Ginsenosides Content in Korean Ginseng Seeds and Roots by High Performance Liquid Chromatography

  • Hu, Jiang Ning;Lee, Jeung-Hee;Shin, Jung-Ah;Choi, Jae-Eul;Lee, Ki-Teak
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.430-433
    • /
    • 2008
  • A high performance liquid chromatography (HPLC) method has been successfully developed to identify and quantify major ginsenosides in Korean ginseng seeds and roots. Using gradient elution of acetonitrile and water without buffer, the 6 major ginsenosides ($Rb_1,\;Rb_2$, Rc, Rd, Re, and $Rg_1$) were identified. Compared with ginseng roots, the amount of ginsenoside Re and Rd in ginseng seeds were significantly higher than those in ginseng roots (p<0.05). In ginseng seeds, the content of protopanaxtriol (PPT) was higher than that of protopanaxdiol (PPD) and the ratio of PPT and PPD was approximately 2.2 : 1. However, the content of PPT was lower than that of PPD in ginseng roots. It should be mentioned that both content of PPT and PPD in ginseng seeds were much higher than those in ginseng roots.

A Novel Ginsenosidase from an Aspergillus Strain Hydrolyzing 6-O-Multi-Glycosides of Protopanaxatriol-Type Ginsenosides, Named Ginsenosidase Type IV

  • Wang, Dong-Ming;Yu, Hong-Shan;Song, Jian-Guo;Xu, Yu-Feng;Liu, Chun-Ying;Jin, Feng-Xie
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권10호
    • /
    • pp.1057-1063
    • /
    • 2011
  • Herein, a novel ginsenosidase, named ginsenosidase type IV, hydrolyzing 6-O-multi-glycosides of protopanaxatriol-type ginsenosides (PPT), such as Re, R1, Rf, and Rg2, was isolated from the Aspergillus sp. 39g strain, purified, and characterized. Ginsenosidase type IV was able to hydrolyze the 6-O-${\alpha}$-L-($1{\rightarrow}2$)-rhamnoside of Re and the 6-O-${\beta}$-D-($1{\rightarrow}2$)-xyloside of R1 into ginsenoside Rg1. Subsequently, it could hydrolyze the 6-O-${\beta}$-D-glucoside of Rg1 into F1. Similarly, it was able to hydrolyze the 6-O-$_{\alpha}$-L-($1{\rightarrow}2$)-rhamnoside of Rg2 and the 6-O-${\beta}$-D-($1{\rightarrow}2$)-glucoside of Rf into Rh1, and then further hydrolyze Rh1 into its aglycone. However, ginsenosidase type IV could not hydrolyze the 3-O- or 20-O-glycosides of protopanaxadiol-type ginsenosides (PPD), such as Rb1, Rb2, Rb3, Rc, and Rd. These exhibited properties are significantly different from those of glycosidases described in Enzyme Nomenclature by the NC-IUBMB. The optimal temperature and pH for ginsenosidase type IV were $40^{\circ}C$ and 6.0, respectively. The activity of ginsenosidase type IV was slightly improved by the $Mg^{2+}$ ion, and inhibited by $Cu^{2+}$ and $Fe^{2+}$ ions. The molecular mass of the enzyme, based on SDS-PAGE, was noted as being approximately 56 kDa.

건삼류 생약의 인삼사포닌 성분 비교 (The Comparison of Ginseng Saponin Composition and Contents in Dried Ginseng Radices)

  • 이재범;김민영;조순현;고성권
    • 생약학회지
    • /
    • 제48권3호
    • /
    • pp.255-259
    • /
    • 2017
  • This study was conducted to provide basic information on ginseng saponin of dried ginseng radices. In order to achieve the proposed objective ginsenoside compositions of dried ginseng radices extract with 70% ethyl alcohol were examined by HPLC. The total saponin content, the sum of all ginsenosides, showed that Wild simulated ginseng (WSG), White fine ginseng (WFG), Skin White ginseng (SWG), and White ginseng (WG) stood at 2.510%, 1.643%, 0.587, and 0.429%, respectively. WSG in PPD/PPT ratio was highest at 3.190, WFG (1.934), WG (1.600), SWG (1.386) in order. In the content of ginsenoside Rb1, one of the marker compounds of ginseng, WSG (1.095%) showed the highest content, and WFG (0.527%), SWG (0.246%), WG (0.133%) in this order. The content of ginsenoside Rb1 of WSG (1.095%) was 4.5 times higher than SWG (0.246%). WSG (0.230%) showed the highest content in ginsenoside Rg1, a marker compounds of ginseng, followed by WFG (0.180%), SWG (0.141%) and WG (0.086%). The content of ginsenoside Rg1 of WSG (0.230%) was 1.6 times higher than SWG (0.141%).

Biodistribution and pharmacokinetic evaluation of Korean Red Ginseng components using radioisotopes in a rat model

  • Sung-Won Kim;Byung-Cheol Han;Seung-Ho So;Chang-Kyun Han;Gyo In;Chae-Kyu Park;Sun Hee Hyun
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.74-80
    • /
    • 2023
  • Background: Although many studies have evaluated the efficacy and pharmacokinetics of Korean Red Ginseng (KRG) components (Rg1, Rb1, Rg3, Rd, etc.), few have examined the in vivo pharmacokinetics of the radiolabeled components. This study investigated the pharmacokinetics of ginsenosides and their metabolite compound K (CK), 20(s)-protopanaxadiol (PPD), and 20(s)-protopanaxatriol (PPT) using radioisotopes in rat oral administration. Methods: Sprague-Dawley rats were dosed orally once with 10 mg/kg of the tritium(3H) radiolabeled samples, and then the blood was collected from the tail vein after 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, 48, 96, and 168 h. Radioactivity in the organs, feces, urine, and carcass was determined using a liquid scintillation counter (LSC) and a bio-imaging analyzer system (BAS). Results and conclusion: After oral administration, as the 3H-labeled ginsenosides were converted to metabolites, Cmax and half-life increased, and Tmax decreased. Interestingly, Rb1 and CK showed similar values, and after a single oral administration of components, the cumulative excretion ratio of urine and feces was 88.9%-92.4%. Although most KRG components were excreted within 96-168 h of administration, small amounts of components were detected in almost all tissues and mainly distributed to the liver except for the digestive tract when observed through autoradiography. This study demonstrated that KRG components were distributed to various organs in the rats. Further studies could be conducted to prove the bioavailability and transmission of KRG components to confirm the mechanism of KRG efficacy.