• 제목/요약/키워드: Ginsenoside re

검색결과 316건 처리시간 0.035초

인삼의 구증구포에 의한 Ginsenoside의 성분변화 및 BACE-1 억제효과 (Conversion of Ginsenosides by 9 Repetitive Steamings and Dryings Process of Korean Ginseng Root and Its Inhibition of BACE-1 Activity)

  • 김도완;김유진;이연진;민진우;김세영;양덕춘
    • 동의생리병리학회지
    • /
    • 제22권6호
    • /
    • pp.1557-1561
    • /
    • 2008
  • Red ginseng possibly has new ingredients converted during steaming and dry process from fresh ginseng. Kujeungkupo method which means 9 repetitive steamings and dryings process was used for the production of red ginseng from 6-year old ginseng roots. Saponin was extracted from each red ginseng produced at the 1st, 3rd, 5th, 7th, and 9th during the steaming and drying treatment, and we analyzed saponin content with TLC. Minor saponins, such as ginsenoside-Rg3, -Rh2, compound K, and F2, increased as the process time of steaming and drying, but major saponins (ginsenoside-Rb1, -Rb2, -Rc, -Rd, -Re, -Rf, -Rg1) were decreased. Major saponins were yet observed almost at the 1st process, then degraded as the increasing time of steaming and drying process. Especially, ginsenoside-Re and -Rg were observed as considerable amount after the 1st treatment, but there were no trace of them after the 9th treatment. Ginsenoside-Rg1, -Rb2, and -Rb1 were also reduced remarkedly by 96.6%, 96%, and 92.3%, respectively. Minor saponins were increased significantly, especially for ginsenoside-Rg3 and ginsenoside-F2. These results suggest that Kujeungkupo method is the very useful method for the production of minor ginsenoside-Rg3 and -Rh2.

Analysis of major ginsenosides in various ginseng samples

  • Lee, Dong Gu;Lee, Ju Sung;Kim, Kyung-Tack;Kim, Hyun Young;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • 제62권1호
    • /
    • pp.87-91
    • /
    • 2019
  • The contents of major ginsenosides (ginsenosides Rb1, ginsenoside Rc, ginsenoside Rd, ginsenoside Re, ginsenoside Rf, and ginsenoside Rg1) in ginseng cultivated in different areas in Korea, ginseng that underwent different cultivation processes and ages, and ginseng cultivated in different countries were determined using high-performance liquid chromatography equipped with UV/VIS detector. Ginsenoside Rc was the most abundant ginsenoside in all different ginseng samples. The highest total concentration of major ginsenosides was found in the ginseng cultivated in Jinan (0.931 mg/g) and 4-year grown red ginseng (1.785 mg/g). Major ginsenosides were the most abundant in Korean ginseng (1.264 mg/g), compared to those in Chinese and American ginseng. The results of this study showed the different contents of major ginsenosides in the ginseng samples tested and emphasized which sample could contain high yield of ginsenosides.

무기영양변화에서 인삼근Ginsenoside의 상호관계 (Relationship among Ginsenosides of Panax ginseng Root under the Variation of Mineral Nutrients)

  • 이미경;민진숙;박훈
    • Journal of Ginseng Research
    • /
    • 제10권1호
    • /
    • pp.101-107
    • /
    • 1986
  • 양분조성(N.P.K)을 달리하여 양액재배한 인삼근(2년생)에서 ginsenoside, triol(PT), diol(PD) 및 총saponin(TS)과의 관계를 단순, 다중회귀 및 standard partial regression coefficient의 검정으로 분석하였다. ginsenoside 상호간의 밀접도는 분자구조의 유이도와 관계가 깊은 것으로 나타났다. PT는 Re와 Rg1에 의존하였으며 PD의 변화는 Rb1>Rb2$\geq$Rd>Rc의 순으로 의존하였다. TS도 PD에 의존도가 커서 TS가 클수록 PT/PD가 적어졌다. PT가 커지면 PD는 더 커지므로 PT와 PT/PD는 부상관을 보였다. 근중이 커지면 모든 ginsenoside는 감소하는 경향이며 Re와는 유의성이 있었다.

  • PDF

인삼 꽃의 물 추출 온도 및 추출 시간이 진세노사이드 함량 및 품질에 미치는 영향 (Effects of Extraction Temperature and Time on Ginsenoside Content and Quality in Ginseng (Panax ginseng) Flower Water Extract)

  • 이누리;한진수;김정선;최재을
    • 한국약용작물학회지
    • /
    • 제19권4호
    • /
    • pp.271-275
    • /
    • 2011
  • In this study, ginseng flower water extracts were analyzed to set up the ginsenoside content and quality optimization condition. The highest total ginsenoside content among the ginseng flower water extracts was 67.44mg/g which was extracted at $85^{\circ}C$ for 3 hours. In addition, the ginsenoside content decreased according to the increased extraction temperature and time. The highest total content of $Rb_2$ and Re was 37.42mg/g at $75^{\circ}C$ for 6 hours. Total content of $Rb_2$ and Re decreased according to the increased extraction temperature and time. The highest prosapogenin ($Rg_2$ + $Rg_3$ + $Rh_1$) content among the total of ginseng flower water extracts was 18.58mg/g which was extracted at $95^{\circ}C$ for 12 hours. The sweetness, absorbance were increased according to the increased extraction temperature and time. But pH was decreased according to the increased extraction time.

산양삼 연근별 생육특성과 진세노사이드 함량 간의 상관관계 연구 (Study on the Correlation between the Ginsenoside Contents and Growth Characteristics of Wild-simulated Ginseng with Different Year-Roots (Panax ginseng C.A. Meyer))

  • 김기윤;엄유리;어현지;박홍우;전권석;김현준
    • 한국자원식물학회지
    • /
    • 제33권4호
    • /
    • pp.255-262
    • /
    • 2020
  • 본 연구는 7년, 13년근 산양삼의 생육특성과 진세노사이드(G) 함량 간의 상관관계를 구명하기 위하여 수행되었다. 6개소의 산양삼의 생육특성을 조사한 결과, 뇌두길이, 뿌리길이, 생중량, 단면적, 표면적, 부피에 있어 13년근 산양삼이 7년근 산양삼에 비하여 유의적으로 높은 것을 확인하였다. 진세노사이드 11종에 대한 함량은 G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 함량이 13년근 산양삼이 7년근 산양삼 보다 유의적으로 높은 수치를 확인하였다. 또한 산양삼과 인삼(재배삼) 진세노사이드 함량을 비교한 결과, 13년 산양삼에서 G-Rb1, Rd, Re, Rf, Rg1이 4년, 5년근 인삼(재배삼)에 비해 유의적으로 함량이 높은 것으로 확인되었다. 산양삼 연근별 생육특성과 진세노사이드 함량 간의 상관관계를 분석한 결과, G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 함량은 뇌두길이, 생중량, 단면적, 표면적, 부피와 유의정인 정의 상관관계를 보였으며, G-Rb1, Re, Rf, Rg2는 줄기직경과 부의 상관관계를 확인하였다. 본 연구는 산양삼의 7년근과 13년근을 대상으로 생육특성과 진세노사이드 함량 상관관계를 구명함으로써 연근에 따른 품질규격 정립에 유용한 정보를 제공 할 것으로 판단된다.

인삼 사포닌 성분이 프로스타글란딘류 생성에 미치는 영향 (Effect of Ginseng Saponins on the Biosynthesis of Prostaglandins)

  • 이선희;박찬웅
    • Journal of Ginseng Research
    • /
    • 제13권2호
    • /
    • pp.202-210
    • /
    • 1989
  • 인삼 성분이 prostaglandin 등 arachidonic acid 대사산물 생성에 미치는 영향을 실험함으로써 인삼의 약리학적 작용기전을 간접적으로 모색하였다. 즉, [$^3H$]-arachidonic acid를 기질로 넣어주고 토끼 신장 micorsome, 소의 대동맥 microsome, 정상 성인의 혈소판 homogenate 등을 효소원으로 한 in vitro 생합성 과정에 변화를 주는 수종 인삼 saponin 성분의 효과를 검정하였다. 실험에 사용한 인삼 saponin 성분은 panaxadiol, panaxatriol 및 protopanaxadiol계 soponin류인 Ginsenoside $Rb_2$(G-$Rb_2$), Ginsenoside Rc(G-Rc) 및 protopanaxatriol계 saponi류인 Ginsenoside (G-$Rb_2$)이었다. 1. Arachidonic acid로부터 생성된 총 cycoloxygenase 반응생성물 및 malondialdehyde의 양은 실험에 사용한 인삼 saponin 성분의 전 농도 범위에서 유의적인 변화를 보이지 않았는데 이는 인삼 saponin 성분들은 cyclooxygenase에 직접 작용하지 않는다는 것을 설명해 준다. 2. Panaxdiol($500{\mu}g$/ml)은 $PGE_2$ 생성에는 영향이 없으나 $PGF_2$$TXB_2$의 생성을 감소시켰으며 동시에 6-keto-$PGF_{1{\alpha}}$의 생성은 증가시켰다. Panaxatriol도 유사한 양상을 보였다. 3. G-$Rb_2$, Rc, Re에 의해 $TXB_2$의 생성은 농도 의존적으로 감소하였으나 6-keto-$PGF_{1{\alpha}}$의 생성은 유의적으로 증가하였다. 또한 arachidonic acid와 $TXA_2$ 유사제인 U46619(9,11-methanoepoxy $PGH_2$)로 유도한 혈소판 응집 현상은 세 ginsenoside에 의해 억제되었다. G-Re의 6-keto-$PGF_{1{\alpha}}$생성증가 효과는 prostacyclin 합성효소억제제에 의해 길항하였다. 이상의 결과와 같이 인삼saponin 성분들은 arachidonic acid로부터 cyclooxygenase를 통해 일단 생성된 endoperoxide에서 각각의 prostaglandin을 생성하는 효소, 특히 G-$Rb_2$$TXA_2$ synthetase에 강력한 억제제로, G-Re는 prostacyclin 생합성에 촉진데로 심혈관계 균형에 기여하리라 생각된다.

  • PDF

Rapid and Simultaneous Determination of Ginsenosides Rb1, Rb2, Rc and Re in Korean Red Ginseng Extract by HPLC using Mass/Mass Spectrometry and UV Detection

  • Kwon, Young-Min;Lee, Sung-Dong;Kang, Hyun-Sook;Cho, Mu-Gung;Hong, Soon-Sun;Park, Chae-Kyu;Lee, Jong-Tae;Jeon, Byeong-Seon;Ko, Sung-Ryong;Shon, Hyun-Joo;Choi, Dal-Woong
    • Journal of Ginseng Research
    • /
    • 제32권4호
    • /
    • pp.390-396
    • /
    • 2008
  • For evaluating the quality of ginseng, simple and fast analysis methods are needed to determine the ginsenoside content of the ginseng products. The aim of this study was therefore to optimize conditions for fast analysis of the ginsenosides, the active ingredients in extracts of Korean red ginseng. When tandem HPLC mass spectrometry (HPLC-MS/MS) was used, four forms of ginsenoside, Rb1, Rb2, Rc, and Re, were readily separated in seven minutes using a gradient mobile phase (acetonitrile and water containing acetic acid). This is the shortest separation time reported among the studies of major ginsenoside analysis. When gradient HPLC with UV detection was used, the detection limit was high, but separation of these four ginsenosides required 25 minutes using acetonitrile and water containing formic acid as a mobile phase. HPLC-MS/MS was able to separate ginsenoside Rg1 easily regardless of the mobile phase condition, but the HPLC-UV could not separate Rg1 because acetonitrile concentration in the mobile phase had to be maintained below 20%. Ginsenoside peaks were clearer and had more sensitive detection limits when Korean red ginseng extract was analyzed by the HPLC-MS/MS, but the UV detection was useful for chromatographic fingerprinting of all four major ginsenosides of the extract: Rb1, Rb2, Rc, and Re. Extracts were found to contain 2.17 mg, 1.51 mg, 1.29 mg, and 0.46 mg of ginsenoside Rb1, Rb2, Rc, Re, respectively, per gram weight. The ratios of each ginsenoside in the extracts were 1.0 : 0.7 : 0.6 : 0.2, respectively. Taken together, the results indicate that HPLC-MS/MS spectrometry could be the most useful method for rapid analysis of even small amounts of major ginsenosides, while HPLC with UV detection could also be used for rapid analysis of major ginsenosides and for quality control of ginseng products.

인삼(人蔘)의 항(抗)스트레스작용(作用)에 관(關)한 연구(硏究) (Studies of Ginseng on the Antistress Effects)

  • 김낙두;한병훈;이은방;공재양;김명혜;진창배
    • 생약학회지
    • /
    • 제10권2호
    • /
    • pp.61-67
    • /
    • 1979
  • Two pure saponin components, Panax saponin C (protopanaxatriol derivative, ginsenoside Re) and Panax saponin E (protopanaxadiol derivative, ginsenoside $Rb_l$) were isolated from Panax ginseng root and their acute toxicities in mice and antistress effects in rats were investigated. Average lethal doses $(LD_{50})$ of ginsenoside Re were 130mg/kg (i.v.), more than 1,000mg/kg (i.p.) and more than 1,500mg/kg (s.c.), respectively. Average lethal dose of ginsenoside $Rb_{1}$ was 243mg/kg intravenously. Adrenal ascorbic acid and cholesterol contents were significantly decreased when normal rats were exposed to heat $(40^{\circ}C)$ for 30 min. The reduction of the adrenal ascorbic acid and cholesterol contents in rats was partially prevented when the rats received the ginseng saponins prior to exposure to heat stress and most pronounced effects were observed in rats received ginsenoside Re. However, it was found that administration of ginseng alone, without stress, did not significantly change the ascorbic acid and cholesterol contents in adrenal glands. Eosinophil counts in the blood of the rats were elevated when the rats were exposed to the heat stress, and the elevation of the eosinophil counts were prevented with the ginseng saponins under the stress, but the changes were all insignificant statistically.

  • PDF

개갑처리기간에 따른 품종별 인삼종자의 지방산, 무기이온 및 사포닌 조성의 변화 (Changes of Fatty Acids, Minerals and Ginsenosides on Ginseng Seeds during Stratifying Treatment)

  • 이가순;성봉재;김선익;한승호;김현호;원준연;김관후
    • 한국약용작물학회지
    • /
    • 제23권5호
    • /
    • pp.406-413
    • /
    • 2015
  • Background : This study was carried out to investigate the changes to fatty acid, mineral, and ginsenosides contents in ginseng seed when they were stratified for different length of time and to determine whether variety had any effects on the changes. The aim was to improve the ginseng seed stratification process. Methods and Results : The ginseng varieties used were Geumpoong, Chunpoong, Yunpoong, and K-1. Stratifying periods treated on ginseng seed were 0, 20, 40, 60, 80, and 100 days. The main fatty acids of ginseng seed were oleic acid (C18 : 1, n9c) with a content of 78.40 - 79.20% followed by linoleic acid (C18 : 2, n6c). The main mineral in the seeds was potassium (K), at 1208.2 -1337.6 mg/100 g. The main ginsenosides in ginseng seed were ginsenoside Re and Rb1. Increasing the length of the stratification periods led to increases in oleic acid content (60 - 80 days), however after this the content declined. In contrast, linoleic acid content fell as the stratification period increased. K, P, Mg, Ca and Na content rose as the stratification period increased. The ginsenoside Re content of Chunpoong and K-1 cultivar seeds also rose as the stratification period increased which meant that total ginsenoside content increased. However, ginsenoside Re content rose in Geumpoong and Yunpoong seeds, but total ginsenoside content decreased as the stratification period increased. Conclusions : Some beneficial compound in ginseng seed rose as the stratification period increased. Therefore, ginseng seed stratification could improve the food value of ginseng.

Ginsenoside Content of North American Ginseng (Panax quinquefolius L. Araliaceae) in Relation to Plant Development and Growing Locations

  • Jackson, Chung Ja C.;Dini, Jean-Paul;Lavandier, Clara;Faulkner, Harold;Rupasinghe, H.P. vasantha;Proctor, John T.A.
    • Journal of Ginseng Research
    • /
    • 제27권3호
    • /
    • pp.135-140
    • /
    • 2003
  • North American ginseng (Panax quinquefolius L.) was analysed for total ginsenosides and ten major ginsenosides (R$_{0}$ , Rb$_1$, Rb$_2$, Rc, Rd, Re, Rf, Rg$_1$, pseudoginsenoside F$_{11}$ and gypenoside XVII), and variations in ginsenoside content with age of plant (over a four-year-period) and geographic location (Ontario versus British Columbia) were investigated. In the roots the total ginsenoside content increased with age up to 58-100 mgㆍg$^{-1}$ dry weights in the fourth year, but in leaves it remained constant over time. Roots and leaves, moreover, had different proportions of individual ginsenosides. The most abundant ginsenosides were Rb$_1$ (56mgㆍg$^{-1}$ for Ontario; 37mgㆍg$^{-1}$ for British Columbia) and Re (21mgㆍg$^{-1}$ for Ontario; 15 mgㆍg$^{-1}$ for British Columbia) in roots, and Rd (28-38 mgㆍg$^{-1}$ ), Re (20-25 mgㆍg$^{-1}$ ), and Rb$_2$ (13-19 mgㆍg$^{-1}$ ) in leaves. Measurable quantities of Rf were found in leaves (0.4-1.8 mgㆍg$^{-1}$ ) but not in roots or stems. Our results show that ginsenoside profiles in general, and Rf in particular, could be used for chemical fingerprinting to distinguish the different parts of the ginseng plant, and that ginseng leaves could be valuable sources of the ginsenosides Rd, Re, and Rb$_2$.