• Title/Summary/Keyword: Ginsenoside M1

검색결과 303건 처리시간 0.027초

Cytotoxicity of Compound K and Ginsenoside $R_{h2}$ against some tumor cells

  • Shin, Ji-Eun;Park, Eun-Kyung;Hong, Yoon-Hee;Kim, Eun-Jin;Lee, Kyung-Tae;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.160.2-160.2
    • /
    • 2003
  • When ginsenoside $R_{b1}$ and $R_{b2}$ were anaerobically incubated with human fecal microflora, these ginsenosides were metabolized to compound K. When ginsenoside $R_{g3}$ was anaerobically incubated with human fecal microflora, the ginsenoside $R_{g3}$ was metabolized it to ginsenoside $R_{h2}$. Among ginsenosides, compound K and 20(S)-ginsenoside $R_h2$ exhibited the most potent cyotoxicity against tumor cells: 50% cytotoxic concentrations of compound K in the media with and without fetal bovine serum (FBS) were 27.1 - 31.6 mM and0.1 - 0.6 mM, and those of 20(S)-ginsenoside $R_h2$ were 37.5 $\rightarrow$ 50 and 0.7 - 7.1 mM mM, respectively. (omitted)

  • PDF

Cytotoxicity of Compound K (IH-901) and Ginsenoside Rh2, Main Biotransformants of Ginseng Saponins by Bifidobacteria, against Some Tumor Cells

  • Shin, Ji-Eun;Park, Eun-Kyung;Kim, Eun-Jin;Hong, Yoon-Hee;Lee, Kyung-Tae;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제27권3호
    • /
    • pp.129-134
    • /
    • 2003
  • When ginsenoside $R_{*}$b1/ and $R_{b2}$ were anaerobically incubated with human fecal microflora, these ginsenosides were metabolized to compound K (IH-901). When ginsenoside $R_{g3}$ was anaerobically incubated with human fecal microflora, the ginsenoside $R_{g3}$ was metabolized it to ginsenoside $R_{h2}$. Among ginsenosides, IH-901 and 20(S)-ginsenoside $R_{h2}$ exhibited the most potent cyotoxicity against tumor cells: 50% cytotoxic concentrations of IH-901 in the media with and without fetal bovine serum (FBS) were 27.1-31.6 $\mu$M and 0.1-0.61 $\mu$M, and those of 20(S)-ginsenoside $R_{h2}$ were 37.5->50 and 0.7-7.1 $\mu$M, respectively. The cytotoxic potency of ginsenosides was IH-901>20(S)-ginsenoside R $h_{h2}$》20(S)-ginsenoside $R_{g3}$>ginsenoside $R_{b1}$(equation omitted) $R_{b2}$.EX>$R_{b2}$./.

Enzymatic Properties of the Convertible Enzyme of Ginseng Saponin Produced from Rhizopus japonicus (Rhizopus japonicus가 생산하는 인삼 Saponin 전환효소의 효소학적 특성)

  • 김상달;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • 제17권2호
    • /
    • pp.126-130
    • /
    • 1989
  • In 14 kinds of ginsenosides in ginseng saponin, ginsenoside Rbr is contained the most abundantly. But ginsenoside Rd which is similar to ginsenoside R $b_1$in structure, was known to be superior to ginsenoside R $b_1$pharmaceutically. The convertible enzyme which can transform ginsenoside R $b_1$to Binsenoside Rd specifically among ginseng saponin, was purified homogeneously from Rhizopus japonicus. The optimal pH for the action of the enzyme was pH 4.8 to 5.0, and optimal temperature was 45$^{\circ}C$. The enzyme was stable in the range of pH 4.0 to 9.0, and the half activity of enzyme was remained by the thermal treatment at 6$0^{\circ}C$ for 2 hours. The enzyme activity was enhanced by addition of M $n^{++}$ or Fe, though inhibited by EDTA or o-phenanthroline. On the substrate specificity, the enzyme was. able to hydrolyze gentiobiose, cellobiose, amygdalin and prunasin, but not to hydrolyze any other kinds of Binsenosides besides Binsenoside R $b_1$. Km values of the enzyme for ginsenoside R $b_1$, gentiobiose and amygdalin were 5.0mM, 4.8mM and 3.7mM, respectively.3.7mM, respectively.y.

  • PDF

Effects of Ginsenoside-$Rg_1$ on Post-thawed Miniature Pig Sperm Motility, Mitochondria Activity, and Membrane Integrity

  • Hwang, You Jin;Kim, Dae Young
    • Journal of Embryo Transfer
    • /
    • 제28권1호
    • /
    • pp.63-71
    • /
    • 2013
  • In this study, we used flow a cytometric assay to evaluate plasma membrane integrity and mitochondrial activity in post-thawed sperm that was supplemented with ginsenoside-$Rg_1$. Varying concentrations of ginsenoside-$Rg_1$ (0, 25, 50 and $100{\mu}M/ml$) were used in the extender during cryopreservation to protect the DNA of thawed sperm, thereby increasing the viability and motility rate as evaluated using a computer-assisted sperm analysis (CASA) method. The results derived from CASA were used to compare the fresh, control, and ginsenoside-$Rg_1$ groups. Sperm motility and the number of progressively motile sperm were significantly (p<0.05) higher in the $50{\mu}M/ml$ ginsenoside-Rg1 group ($61.0{\pm}4.65%$) than in the control ($46.6{\pm}7.02%$), $25{\mu}M/ml$ ($46.2{\pm}4.76%$), and $100{\mu}M/ml$ ginsenoside-$Rg_1$ ($52.0{\pm}1.90%$) groups. However, the velocity distribution of post-thawed sperm did not differ significantly. Membrane integrity and MMP staining as revealed using flow cytometry were significantly (p<0.05) higher ($91.6{\pm}0.82%$) in the $50{\mu}M/ml$ ginsenoside-$Rg_1$ group than in the other groups. Here, we report that ginsenoside-$Rg_1$ affects the motility and viability of boar spermatozoa. Moreover, ginsenoside-$Rg_1$ can be used as a protective additive for the suppression of intracellular mitochondrial oxidative stress caused by cryopreservation.

Inhibitory Effect of Elastase and Tyrosinase of Ginsenoside $F_1$ Isolated from Panax ginseng Leaves (인삼잎으로부터 분리된 진세노사이드 $F_1$의 Elastase 및 Tyrosinase 억제 효과)

  • Hong, Se Chul;Yoo, Nam Hee;Yoo, Ji Hyun;Lee, Kun Hee;Kim, Bo Ram;Lee, Ho Joo;Kim, Jong Min;Seong, Nak Sul;Pyo, Mi Kyung
    • Korean Journal of Pharmacognosy
    • /
    • 제44권1호
    • /
    • pp.10-15
    • /
    • 2013
  • This study was carried to establish a simple isolation and purification method of ginsenoside $F_1$ from leaves of Panax ginseng and was to evaluate the inhibitory effect of purified ginsenoside $F_1$ on the activities of elastase and tyrosinase. The content of ginsenoside $F_1$ was 90-fold higher in leaves than in root of ginseng. Ginsenoside $F_1$ was isolated from EtOAc fraction between EtOAc and alkalized water of 80% EtOH extract after remove of hydrophobic components. The 50% inhibitory concentration ($IC_{50}$) of ginsenoside $F_1$ on elastase activity and tyrosinase activity was 1.07 mM and 1.81 mM, respectively. Especially, inhibitory effect of ginsenoside $F_1$ on tyrosinase activity was higher than that of arbutin ($IC_{50}$; 2.20 mM). These results indicate that ginsenoside $F_1$ have a potential for industrial cosmetic materials.

The Mechanism of LDL Receptor Up-regulation by Ginsenoside-Rb2 in HepG2 Cultured under Enriched Cholesterol Condition (고콜레스테롤 조건하에 배양된 HepG2에서의 ginsenoside-Rb2에 의한 LDL receptor 억제 완화 기전)

  • Lim, G-Rewo;Lee, Hyun-Il;Kim, Eun-Ju;Ro, Young-Tae;Noh, Yun-Hee;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • 제28권2호
    • /
    • pp.87-93
    • /
    • 2004
  • The effect of ginsenoside-Rb2, one of a major pharmacological component of Panax ginseng C.A. Meyer, on low density lipoprotein (LDL) receptor expression was investigated and compared with hypocholesterolemic drug lovastatin. In HepG2 cell, exogenous cholesterol decreased LDL receptor mRNA expression, but ginsenoside-Rb2 recovered this reduction of LDL receptor mRNA up to normal expression level. Lovastatin also increased LDL receptor mRNA expression as similar as ginsenoside-Rb2 did. The reduction of sterol regulatory element binding protein (SREBP) transcription by exogenous cholesterol was also similarly recovered by ginsenoside-Rb2 and lovastatin addition. Compound K, a metabolite of ginsenoside-Rb2 and -Rb1 by human intestinal bacteria also increased the SREBP mRNA expression in cholesterol-enriched condition. Ginsenoside-Rb2 seems to up-regulate LDL receptor mRNA expression through the induction of de novo SREBP transcription. Therefore, increased expression of SREBP mRNA by ginsenoside-Rb2 elevated the LDL receptor mRNA expression in HepG2 cells, and these inductions possibly drop the plasma cholesterol level in hypercholesterolemia patients, in vivo, as likely in case of lovastatin.

Effect of a soluble prebiotic fiber, NUTRIOSE, on the absorption of ginsenoside Rd in rats orally administered ginseng

  • Kim, Kyung-Ah;Yoo, Hye Hyun;Gu, Wan;Yu, Dae-Hyung;Jin, Ming Ji;Choi, Hae-Lim;Yuan, Kathy;Guerin-Deremaux, Laetitia;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제38권3호
    • /
    • pp.203-207
    • /
    • 2014
  • Background: There is limited understanding of the effect of dietary components on the absorption of ginsenosides and their metabolites into the blood. Methods: This study investigated the pharmacokinetics of the ginseng extract and its main constituent ginsenoside Rb1 in rats with or without pretreatment with a prebiotic fiber, NUTRIOSE, by liquid chromatography tandem mass spectrometry. When ginsenoside Rb1 was incubated with rat feces, its main metabolite was ginsenoside Rd. Results: When the intestinal microbiota of rat feces were cultured in vitro, their ginsenoside Rd-forming activities were significantly induced by NUTRIOSE. When ginsenoside Rb1 was orally administered to rats, the maximum plasma concentration (Cmax) and area under the plasma drug concentratione-time curve (AUC) for the main metabolite, ginsenoside Rd, were $72.4{\pm}31.6ng/mL$ and $663.9{\pm}285.3{\mu}g{\cdot}h/mL$, respectively. When the ginseng extract (2,000 mg/kg) was orally administered, Cmax and AUC for ginsenoside Rd were $906.5{\pm}330.2ng/mL$ and $11,377.3{\pm}4,470.2{\mu}g{\cdot}h/mL$, respectively. When ginseng extract was orally administered to rats fed NUTRIOSE containing diets (2.5%, 5%, or 10%), Cmax and AUC were increased in the NUTRIOSE receiving groups in a dose-dependent manner. Conclusion: These findings reveal that intestinal microflora promote metabolic conversion of ginsenoside Rb1 and ginseng extract to ginsenoside Rd and promote its absorption into the blood in rats. Its conversion may be induced by prebiotic diets such as NUTRIOSE.

Ginsenoside Rg1 Induces Autophagy in Colorectal Cancer through Inhibition of the Akt/mTOR/p70S6K Pathway

  • Ruiqi Liu;Bin Zhang;Shuting Zou;Li Cui;Lin, Lin;Lingchang Li
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.774-782
    • /
    • 2024
  • This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.

Comparison of Physicochemical Properties and Malonyl Ginsenoside Contents between White and Red Ginseng (백삼 및 홍삼의 이화학적 특성 및 말로닐 진세노사이드 함량 비교)

  • Oh, Myeong Hwan;Park, Young Sik;Lee, Hwan;Kim, Na Young;Jang, Young Boo;Park, Ji Hun;Kwak, Jun Young;Park, Young Soon;Park, Jong Dae;Pyo, Mi Kyung
    • Korean Journal of Pharmacognosy
    • /
    • 제47권1호
    • /
    • pp.84-91
    • /
    • 2016
  • Korean ginseng (Panax ginseng C. A. Meyer) has been used as a traditional herbal medicine in East Asia and is very popular in the world, because of its health benefits. To comparison of pharmacological components and physiochemical properties between white and red ginseng from same body, we analyzed ginsenoside and malonyl ginsenoside, ash, crude lipid/protein, fatty acid, mineral contents, total/reducing sugar, and total phenolic and acidic polysaccharide contents. The general components did not show any significant difference between white and red ginseng. Whereas, the content of neutral ginsenoside $Rb_1$, $Rb_2$, Rc and Rd were higher in red ginseng than those of white ginseng. However, malonyl ginsenoside such as $m-Rb_1$, $m-Rb_2$, m-Rc and m-Rd in white ginseng were similar to neutral ginsenoside $Rb_1$, $Rb_2$, Rc and Rd in white ginseng and far higher than those of red ginseng. These results exhibit that malonyl ginsenosides were converted to neutral ginsenosides in steaming process for red ginseng. So, we suggest that malonyl ginsenoside are necessary to applies in ginsenoside analysis of Korean ginseng.

Effects of Jasmonic Acid and Benzoic Acid on Ginsenoside Production in Suspension Cultures of Panax ginseng C.A. Meyer (인삼세포 배양에서 쟈스몬산과 안식향산이 Ginsenoside 생산에 미치는 영향)

  • 변상요;유병삼
    • KSBB Journal
    • /
    • 제17권1호
    • /
    • pp.110-113
    • /
    • 2002
  • Studies were made to examine the various effects of jasmonic acid and benzoic acid on ginsenoside production in suspension cultures of Panax ginseng C. A. Meyer. Jasmonic acid increased the ginsenoside production when it was dosed at the concentration of 50 $\mu$M or higher. The cell growth, however, was reduced with jasmonic acid. When benzoic acid was dosed simultaneously with iasmonic acid, the ginsenoside production increased 9.6 folds. It was 2.2 times higher than the result of single dose of jasmonic acid.