DOI QR코드

DOI QR Code

Effects of Ginsenoside-$Rg_1$ on Post-thawed Miniature Pig Sperm Motility, Mitochondria Activity, and Membrane Integrity

  • Hwang, You Jin (Department of Biological Science, College of Bio-Nano Technology, Gachon University) ;
  • Kim, Dae Young (Department of Biological Science, College of Bio-Nano Technology, Gachon University)
  • Received : 2013.02.28
  • Accepted : 2013.03.09
  • Published : 2013.03.31

Abstract

In this study, we used flow a cytometric assay to evaluate plasma membrane integrity and mitochondrial activity in post-thawed sperm that was supplemented with ginsenoside-$Rg_1$. Varying concentrations of ginsenoside-$Rg_1$ (0, 25, 50 and $100{\mu}M/ml$) were used in the extender during cryopreservation to protect the DNA of thawed sperm, thereby increasing the viability and motility rate as evaluated using a computer-assisted sperm analysis (CASA) method. The results derived from CASA were used to compare the fresh, control, and ginsenoside-$Rg_1$ groups. Sperm motility and the number of progressively motile sperm were significantly (p<0.05) higher in the $50{\mu}M/ml$ ginsenoside-Rg1 group ($61.0{\pm}4.65%$) than in the control ($46.6{\pm}7.02%$), $25{\mu}M/ml$ ($46.2{\pm}4.76%$), and $100{\mu}M/ml$ ginsenoside-$Rg_1$ ($52.0{\pm}1.90%$) groups. However, the velocity distribution of post-thawed sperm did not differ significantly. Membrane integrity and MMP staining as revealed using flow cytometry were significantly (p<0.05) higher ($91.6{\pm}0.82%$) in the $50{\mu}M/ml$ ginsenoside-$Rg_1$ group than in the other groups. Here, we report that ginsenoside-$Rg_1$ affects the motility and viability of boar spermatozoa. Moreover, ginsenoside-$Rg_1$ can be used as a protective additive for the suppression of intracellular mitochondrial oxidative stress caused by cryopreservation.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Broekhuijse ML, Sostaric E, Feitsma H and Gadella BM. 2011. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 76:1473-1486. https://doi.org/10.1016/j.theriogenology.2011.05.040
  2. Donnelly ET, Lewis SE, McNally JA and Thompson W. 1998. In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome. Fertil. Steril. 70:305-314. https://doi.org/10.1016/S0015-0282(98)00146-0
  3. Fraser L, Dziekonska A, Strzezek R and Strzezek J. 2007. Dialysis of boar semen prior to freezing-thawing: its effects on post-thaw sperm characteristics. Theriogenology 67:994-1003. https://doi.org/10.1016/j.theriogenology.2006.12.002
  4. Frhr J and Lepel V. 1975. Maintenance of fertility in the horse including artificial insemination. Equine Vet. J. 7:97-101. https://doi.org/10.1111/j.2042-3306.1975.tb03242.x
  5. Garner DL, Thomas CA, Joerg HW, DeJarnette JM and Marshall CE. 1997. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 57:1401-1406. https://doi.org/10.1095/biolreprod57.6.1401
  6. Hallap T, Nagy S, Jaakma U, Johannisson A and Rodriguez-Martinez H. 2005. Mitochondrial activity of frozen-thawed spermatozoa assessed by MitoTracker Deep Red 633. Theriogenology, 63:2311-2322. https://doi.org/10.1016/j.theriogenology.2004.10.010
  7. Han M and Fang XL. 2006. Difference in oral absorption of ginsenoside $Rg_1$ between in vitro and in vivo models. Acta Pharmacol. Sin. 27:499-505. https://doi.org/10.1111/j.1745-7254.2006.00303.x
  8. He S and Woods LC. 2004. Effects of dimethyl sulfoxide and glycine on cryopreservation induced damage of plasma membranes and mitochondria to striped bass (Morone saxatilis) sperm. Cryobiology 48:254-262. https://doi.org/10.1016/j.cryobiol.2004.01.009
  9. Hu JH, Li QW, Jiang ZL, Yang H, Zhang SS and Zhao HW. 2009. The cryoprotective effect of trehalose supplementation on boar spermatozoa quality. Reprod. Domest. Anim. 44:571-575. https://doi.org/10.1111/j.1439-0531.2007.00975.x
  10. Hu JH, Li QW, Zan LS, Jiang ZL, An JH, Wang LQ and Jia YH. 2010. The cryoprotective effect of low-density lipoproteins in extenders on bull spermatozoa following freezing- thawing. Anim. Reprod. Sci. 117:11-17. https://doi.org/10.1016/j.anireprosci.2009.04.001
  11. Huang T, Fang F, Chen L, Zhu Y, Zhang J, Chen X and Yan SS. 2012. Ginsenoside $Rg_1$ attenuates oligomeric Abeta (1-42)-induced mitochondrial dysfunction. Curr. Alzheimer Res. 9:388-395. https://doi.org/10.2174/156720512800107636
  12. Hwang YJ, Yang JH, Kim SO, Kim BK, Choi SK, Park CK and Kim DY. 2009. Effect of dimethylformamide on postthaw motility, acrosome integrity, and DNA structure of frozen boar sperm. J. Emb. Trans. 24:275-279.
  13. Kong HL, Li ZQ, Zhao YJ, Zhao SM, Zhu L, Li T, Fu Y and Li HJ. 2010. Ginsenoside $Rb_1$ protects cardiomyocytes against $CoCl_2$-induced apoptosis in neonatal rats by inhibiting mitochondria permeability transition pore opening. Acta Pharmacol. Sin. 31:687-695. https://doi.org/10.1038/aps.2010.52
  14. Korivi M, Hou CW, Huang CY, Lee SD, Hsu MF, Yu SH, Chen CY, Liu YY and Kuo CH. 2012. Ginsenoside-$Rg_1$ protects the liver against exhaustive exercise-induced oxidative stress in rats. Evid. Based Complement. Alternat. Med. Article ID 932165.
  15. Lee ES, Choi SG, Yang JH, Bae MS, Park JY, Park HM, Han TK, Hwang YJ and Kim DY. 2010. Evaluation of DNA fragments on boar sperm by ligation-mediated quantitative real time PCR. J. Emb. Trans. 25:111-116.
  16. Lim JJ, Shin TE, Song SH, Bak CW, Yoon TK and Lee DR. 2010. Effect of liquid nitrogen vapor storage on the motility, viability, morphology, deoxyribonucleic acid integrity, and mitochondrial potential of frozen-thawed human spermatozoa. Fertil. Steril. 94:2736-2741. https://doi.org/10.1016/j.fertnstert.2010.02.051
  17. Macias Garcia B, Ortega Ferrusola C, Aparicio IM, Miro-Moran A, Morillo Rodriguez A, Gallardo Bolanos JM, Gonzalez Fernandez L, Balao da Silva CM, Rodriguez Martinez H, Tapia JA and Pena FJ. 2012. Toxicity of glycerol for the stallion spermatozoa: effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondrial membrane potential. Theriogenology 77:1280- 1289. https://doi.org/10.1016/j.theriogenology.2011.10.033
  18. Martinez-Pastor F, Johannisson A, Gil J, Kaabi M, Anel L, Paz P and Rodriguez-Martinez H. 2004. Use of chromatin stability assay, mitochondrial stain JC-1, and fluorometric assessment of plasma membrane to evaluate frozen-thawed ram semen. Anim. Reprod. Sci. 84:121-133. https://doi.org/10.1016/j.anireprosci.2003.12.006
  19. O'Connell M, McClure N and Lewis SE. 2002. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum. Reprod. 17: 704-709. https://doi.org/10.1093/humrep/17.3.704
  20. Ogier de Baulny B, Labbe C and Maisse G. 1999. Membrane integrity, mitochondrial activity, ATP content, and motility of the European catfish (Silurus glanis) testicular spermatozoa after freezing with different cryoprotectants. Cryobiology 39:177-184. https://doi.org/10.1006/cryo.1999.2200
  21. Park CH, Kim SW, Hwang YJ and Kim DY. 2012. Cryopreservation with trehalose reduced sperm chromatin damage in miniature pig. J. Emb. Trans. 27:107-111.
  22. Partyka A, Nizanski W and Lukaszewicz E. 2010. Evaluation of fresh and frozen-thawed fowl semen by flow cytometry. Theriogenology 74:1019-1027. https://doi.org/10.1016/j.theriogenology.2010.04.032
  23. Pena FJ, Johannisson A, Wallgren M and Rodriguez Martinez H. 2003. Antioxidant supplementation in vitro improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim. Reprod. Sci. 78:85-98. https://doi.org/10.1016/S0378-4320(03)00049-6
  24. Pena FJ, Rodriguez Martinez H, Tapia JA, Ortega Ferrusola C, Gonzalez Fernandez L and Macias Garcia B. 2009. Mitochondria in mammalian sperm physiology and pathology: a review. Reprod. Domest. Anim. 44:345-349.
  25. Roca J, Vazquez JM, Gil MA, Cuello C, Parrilla I and Martinez EA. 2006. Challenges in pig artificial insemination. Reprod. Domest. Anim. 2:43-53.
  26. Segovia M, Jenkins JA, Paniagua-Chavez C and Tiersch TR. 2000. Flow cytometric evaluation of antibiotic effects on viability and mitochondrial function of refrigerated spermatozoa of Nile tilapia. Theriogenology 53:1489-1499. https://doi.org/10.1016/S0093-691X(00)00291-0
  27. Shen L, Han JZ, Li C, Yue SJ, Liu Y, Qin XQ, Liu HJ and Luo ZQ. 2007. Protective effect of ginsenoside $Rg_1$ on glutamate-induced lung injury. Acta Pharmacol. Sin. 28:392-397. https://doi.org/10.1111/j.1745-7254.2007.00511.x
  28. Shimokawa K, Oshiro R, Yamanaka K, Ashizawa K, Ohta S and Tatemoto H. 2012. Improvement of the post-thaw qualities of Okinawan native Agu pig sperm frozen in an extender supplemented with antiapoptotic PTD-FNK protein. Theriogenology 78:1446-1455. https://doi.org/10.1016/j.theriogenology.2012.06.005
  29. Silva PF and Gadella BM. 2006. Detection of damage in mammalian sperm cells. Theriogenology 65:958-978. https://doi.org/10.1016/j.theriogenology.2005.09.010
  30. Singleton EF. 1970. Field collection and preservation of bovine semen for artificial insemination. Aust. Vet. J. 46:160-163. https://doi.org/10.1111/j.1751-0813.1970.tb01980.x
  31. Thomas CA, Garner DL, DeJarnette JM and Marshall CE. 1998. Effect of cryopreservation of bovine sperm organelle function and viability as determined by flow cytometry. Biol. Reprod. 58:786-793. https://doi.org/10.1095/biolreprod58.3.786
  32. Watson PF. 1995. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 7:871-891. https://doi.org/10.1071/RD9950871
  33. Watson PF and Martin IC. 1976. Artificial insemination of sheep: the effect of semen diluents containing egg yolk on the fertility of ram semen. Theriogenology 6:559-564. https://doi.org/10.1016/0093-691X(76)90123-0
  34. Wu J, Pan Z, Cheng M, Shen Y, Yu H, Wang Q and Lou Y. 2013. Ginsenoside $Rg_1$ facilitates neural differentiation of mouse embryonic stem cells via GR-dependent signaling pathway. Neurochem. Int. 62:92-102. https://doi.org/10.1016/j.neuint.2012.09.016
  35. Yang N, Chen P, Tao Z, Zhou N, Gong X, Xu Z, Zhang M, Zhang D, Chen B and Yang Z. 2012. Beneficial effects of ginsenoside-$Rg_1$ on ischemia-induced angiogenesis in diabetic mice. Acta Biochim. Biophys. Sin. 44:999-1005. https://doi.org/10.1093/abbs/gms092
  36. Yu LC, Chen SC, Chang WC, Huang YC, Lin KM, Lai PH and Sung HW. 2007. Stability of angiogenic agents, ginsenoside $Rg_1$ and Re, isolated from Panax ginseng: in vitro and in vivo studies. Int. J. Pharm. 328:168-176. https://doi.org/10.1016/j.ijpharm.2006.08.009
  37. Zhang H, Zhou Q, Li X, Zhao W, Wang Y, Liu H and Li N. 2007. Ginsenoside Re promotes human sperm capacitation through nitric oxide-dependent pathway. Mol. Reprod. Dev. 74:497-501. https://doi.org/10.1002/mrd.20583
  38. Zhang X, Wang J, Xing Y, Gong L, Li H, Wu Z, Li Y, Wang Y, Dong L and Li S. 2012. Effects of ginsenoside $Rg_1$ or 17 beta-estradiol on a cognitively impaired, ovariectomized rat model of Alzheimer's disease. Neuroscience 220:191-200. https://doi.org/10.1016/j.neuroscience.2012.06.027
  39. Zhang ZL, Fan Y and Liu ML. 2012. Ginsenoside $Rg_1$ inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. Mol. Cell. Biochem. 365:243-250. https://doi.org/10.1007/s11010-012-1265-3
  40. Zou Y, Tao T, Tian Y, Zhu J, Cao L, Deng X and Li J. 2013. Ginsenoside $Rg_1$ improves survival in a murine model of polymicrobial sepsis by suppressing the inflammatory response and apoptosis of lymphocytes. J. Surg. Res. (in press).