• Title/Summary/Keyword: Ginseng field

Search Result 437, Processing Time 0.035 seconds

Relationship Between Yield of Seedling and Soil Physico-Chemical Components of Ban-Yang-Jik Nursery in Ginseng Plantation (산지(産地) 반양직묘포(半養直苗圃)에서의 묘삼수량(苗蔘收量)과 토양이화학성간(土壤理化學性間)의 관계조사(關係調査))

  • Lee, Jong-Chul;Byen, Jeong-Su;Ahn, Dai-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.177-181
    • /
    • 1988
  • To get the basic information about ginseng seedling production, yield of ginseng seedling and soil physico-chemical components of Ban-Yang-Jik (semimodified soil) nursery in 29 farmer's field were investigated. The number of available seedling per Kan (Kan means $180{\times}90cm$ area) is $362{\pm}226$. Root weight per seedling was negatively correlated with ammount of fine and extremely fine sand. Positive correlations were shown between pH and OM, K, Ca and Mg, and also between EC and Ca, Mg and ammonium and nitrate nitrogen in soil of nursery. There were significant linear relations between root weight and OM, K, Ca and Mg in soil of nursery. On the other hand, quadratic relation was held between the root weight and $P_2O_5$, but the root weight has no correlation with nitrogen. The nitrogen contents of soil might not influence on the growth of ginseng seedling as greatly as those of $P_2O_5$, K and Ca. The contents of $P_2O_5$, K and Ca in root were increased with increase of the contents of $P_2O_5$, K and Ca in soil of nusery, respectively. It showed the linear correlation between the root weight and $P_2O_5$ and Ca, otherwise quadratic correlation between the root weight and K in root.

  • PDF

Statistic Model by Soil Physico-Chemical Properties for Prediction of Ginseng Root Yield (토양이화학성(土壤理化學性)을 이용(利用)한 인삼근(人蔘根) 수량예측(收量豫測)의 통계적(統計的) 모형(模型))

  • Lee, Jong-Chul;Lee, Il-Ho;Hahn, Weon-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.371-374
    • /
    • 1984
  • This study was conducted to establish the statistic model by use the soil physico-chemical properties for prediction of ginseng root yield. Twenty seven farmer's red ginseng fields from the ginseng growing area were chosen for this study. Root yield of 6-year old ginseng was $1.85{\pm}0.54Kg$ per $3.3m^2$, and it showed positive correlation between yield and porosity, content of clay, clay and silt, organic matter, cation exchange capacity of the field soils, respectively, but showed a negative correlation with available phosphate. Prediction of root yield was possible with equation combined with porosity($X_1$), content of clay($X_2$), clay and silt($X_3$), available phosphate($X_4$), CEC($X_5$), the equation is $Y=-1.175+0.033X_1-0.04X_2+0.012X_3-0.001X_4+0.171X_5$. Standard partial regression coefficients were 0.3799 in CEC, 0.1550 in content of clay, 0.0890 in porosity, 0.0599 in content of clay silt, and -0.0138 in available phosphate.

  • PDF

Mineral Nutrition Contents of Rusty-Root To1erance Ginseng Lines in 6-Year Old Root (6년생 적변내성 인삼계통의 무기성분함량 특성)

  • Lee, Sung-Sik;Lee, Kyoung-Hwan;Kim, Eun-Soo
    • Journal of Ginseng Research
    • /
    • v.26 no.3
    • /
    • pp.159-164
    • /
    • 2002
  • Experiments were carried out to select the rusty tolerance lines in 39 inbred lines of ginseng cultivated in field, among them, 7 lines showed low degree of rusty root while 7 lines showed high degree of rusty root. In order to select marker elements among mineral nutrients for rusty ginseng root, we combined 5 groups as follows : Ⅰ (healthy-root of low rusty degree lines vs. rusty-root of high rusty degree lines), II (healthy-root vs. rusty-root in low rusty degree lines), Ⅲ (healthy-root vs. rusty-root in high rusty degree lines), Ⅳ (low rusty degree lines vs. high rusty degree lines in rusty-root), Ⅴ (low rusty degree lines vs. high rusty degree lines in healthy-root), and analyzed mineral nutrition at different root parts. The contents of mineral nutritions in stele and cortex were not different between healthy lines and rusty lines, and between healthy roots and rusty roots, but that in branch and fine roots were not a tendency. The contents of Fe, Na and Al in epidermis were higher in rusty-root than healthy-root. Also, the contents of Fe and Al in epidermis of high rusty degree lines (HRL) were higher than those of low rusty degree lines (LRL) in healthy-roots and rusty-roots, and so we suggest Fe and Al as markers to select low rusty degree ginseng lines.

Control of Ginseng Damping-Off Disease Using Chitinolytic Bacterial Mixtures (키틴분해미생물을 이용한 인삼 잘록병 방제)

  • Kim, Young Cheol;Chung, Hyun Chae;Bae, Yeoung Seuk;Park, Seur Kee
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.353-358
    • /
    • 2018
  • An effective bioformulation of mixtures of chitin-degrading bacteria has been used successfully to control plant diseases and nematodes. In this study, the bioformulation approach was assessed to control damping-off disease of ginseng. In pot experiments with soils infested with dapming-off pathogens of ginseng, root-drenchings of Chrobacterium sp. C-61, Lysobacterium enzymogenes C-3, and mixture of two bacterial strains grown in chitin minimal medium were signficantly increased emergence of seeds and reduced damping-off disease incidence of seedlings. Efficacy of the bioformulated product depended on the dose and timing of application. In two-year-old ginseng field, the high control efficacies were achieved by soil drenching of two times with an undiluted product or three times with a 10-fold diluted product. In a To-jik nursery (self soil nursery), biocontrol efficacy of the undiluted product against damping-off disease were similar to that of a seed dressing with fungicide, Tolclofos-methyl WP. These results suggest that the bioformulated product containing Chromobacterium sp. C-61 and L. enzymogenes C-3 could be an effective approach to control of ginseng damping-off disease.

Selection and Identification of a Strain KT-10 Producing the Cathepsin B Inhibitor

  • Han, Kil-Hwan;Do, Jae-Ho;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.333-340
    • /
    • 1997
  • An actinomycetes, KT-10 isolated from ginseng field in Kyongpook, Korea was selected based on its ability to produce a lysosomal cathepsin B inhibitor. The inhibitor purified from the culture supernatant of the isolate KT-10 showed strong inhibitory effects against cathepsin B as well as against papain when the activities were measured using synthetic substrate, ${\alpha}$-N-benzyloxycarbonyl-L-Iysine p-nitrophenyl ester (CLN) or ${\alpha}$-N-benzoyl-D,L-arginine 2-naphthylamide (BANA). The isolate KT-10 was identified as a species of Streptomyces based on its morphological characteristics and chemotaxonomic data. The TAXON program of Ward was used to identify Streptomyces sp. KT-10 as a strain of Streptomyces luteogriseus belong to cluster 18 of the genus Streptomyces with a Willcox probability 0.999388. The cathepsin B inhibitor was presumed to a novel material composed of a polyhydroxylamine.

  • PDF

Occurence Pattern of Yield and Missing Plant of Panax Ginseng in Lines under Field Condition (인삼포장의 행별수량과 결수발현양상)

  • 박훈;오승환;이종화
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.2
    • /
    • pp.76-81
    • /
    • 1980
  • Root yield, number of missing and diseased plant in each line were investigated in various ginseng farms. Root yield per unit area was negatively correlated to missing percentage. Missing percentage showed significant positive correlation with diseased rate. Among lines yield was significantly different in most fields while missing rate was not, indicating that yield of each line is affected by present shading method but disease occurrence is not. Thus there are two ways of yield increase, shading improvement and disease control.

  • PDF

Microbial Conversion of Major Ginsenoside $Rb_1$ to Pharmaceutically Active Minor Ginsenoside Rd

  • Kim Myung Kyum;Lee Jun Won;Lee Ki Young;Yang Deok-Chun
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.456-462
    • /
    • 2005
  • More than seventy strains of aerobic bacteria showing ${\beta}$-glucosidase activity were isolated from a ginseng field, using a newly designed Esculin-R2A agar, and identified by their 16S rRNA gene sequences. Of these microorganisms, twelve strains could convert the major ginsenoside, $Rb_1$, to the pharmaceutically active minor ginsenoside Rd. Three strains, Burkholderia pyrrocinia GP16, Bacillus megaterium GP27 and Sphingomonas echinoides GP50, were phylogenetically studied, and observed to be most potent at converting ginsenoside $Rb_1$ almost completely within 48 h, as shown by TLC and HPLC analyses.

Effects on Ginseng Growth and Ginsenoside Content in ICT-based Process Cultivation and Conventional Cultivation (ICT 기반의 공정재배와 관행재배에 있어서 인삼 생장 및 진세 노사이드 함량에 미치는 영향)

  • Kwang Jin Chang;Yeon Bok Kim;Hyun Jung Koo;Hyun Jin Baek;Eui Gi Hong;Su Bin Lee;Jeei Hye Choi;Hyo Yeon Son;Tae Young Kim;Dong Hyun Kim
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.2
    • /
    • pp.12-19
    • /
    • 2023
  • This study conducted an experiment with EC 1.0ms/cm ratio and excellent soil conditions for germination in ICT-based ginseng process cultivation. The first growth survey was conducted before transplantation of ginseng 1-year roots grown by seeding ginseng in the process cultivation, conventional cultivation and a second growth comparison survey was conducted after 3 months of growth. In the results, it was confirmed that ginseng grown in the process cultivation grew more than in the field. As a result of comparing the contents of 11 ginsenosides of 1-year and 2-year-old ginsenosides in the process cultivation and conventional cultivation ginseng, it was confirmed that the content of the process cultivation ginseng was higher than that of practice cultivation ginseng. In conclusion, conventional cultivation ginseng grows due to various factors under the natural cultivation environment, but process cultivation can secure the growth stability of ginseng by allowing stable soil and environmental control, so continuous research is needed in the future.

Effect of High Temperature and Growth Light Intensity on Fatty Acid Composition of Panax ginseng leaf (고온(高溫)과 재배광도(栽培光度)가 인삼(人蔘) 잎의 지방산(脂肪酸) 조성(組成)에 미치는 영향(影響))

  • Park, Hoon;Park, Hyeon-Suk;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.29 no.4
    • /
    • pp.366-371
    • /
    • 1986
  • Fatty acid compositions of Panax ginseng leaves (6 year) grown under different light intensity in field and of the detached leaves exposed to high temperature (20 hours) were investigated by gas chromatography. Linoleic, linolenic, palmitic and palmitoleic acid were the major components(80%) of leaf lipid. The higher the growth light intensity, the lower the percentage of unsaturated acids or bonds, indicating metabolic adaptation to high temperature. Pattern similarity of fatty acid composition was little changed until 20% light but significantly different at 30%, suggesting 20% as limitation light intensity. The close similarity of fatty acid composition between the loaves grown under 30% light and the one at harvest rises uncertainty between adaptation to high temperature and senescence. Total fatty acid content decreased with the increase of light intensity. Short term high temperature $(25^{\circ}C\;or\;35^{\circ}C)$ increased total fatty acid content, unsaturated acid percentage and insignificant difference in pattern similarity of composition.

  • PDF