• Title/Summary/Keyword: Ginseng by-product

Search Result 239, Processing Time 0.031 seconds

Subacute oral toxicity and bacterial mutagenicity study of Korean Red Ginseng oil

  • Seo, Hwi Won;Suh, Jae Hyun;So, Seung-Ho;Kyung, Jong-Soo;Kim, Yong-Soon;Han, Chang-Kyun
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.595-601
    • /
    • 2017
  • Background: Red ginseng oil (RGO) is produced by supercritical $CO_2$ extraction of secondary products derived from Korean Red Ginseng extract. As the use of RGO has increased, product safety concerns have become more important. Methods: In the present study, the subacute oral toxicity and bacterial reverse mutagenicity of RGO were evaluated. Sprague-Dawley rats were orally administered with RGO for 28 d by gavage. Daily RGO dose concentrations were 0 mg/kg body weight (bw), 500 mg/kg bw, 1,000 mg/kg bw, or 2,000 mg/kg bw per day. Bacterial reverse mutation tests included five bacterial strains (Escherichia coli WP2 and Salmonella typhimurium TA98, TA100, TA1535, and TA1537), which were used in the presence or absence of metabolic activation. The plated incorporation method for mutation test was used with RGO concentrations ranging from $312.5{\mu}g$ to $5,000{\mu}g$ per plate. Results: The subacute oral toxicity test results did not reveal any marked changes in clinical characteristics. There were no toxicological changes related to RGO administration in hematological and serum biochemical characteristics in either control or treatment animals. Furthermore, no gross or histopathological changes related to RGO treatment were observed. The bacterial reverse mutation test results did not reveal, at any RGO concentration level and in all bacterial strains, any increase in the number of revertant colonies in the RGO treatment group compared to that in the negative control group. Conclusion: The no-observed-adverse-effect level of RGO is greater than 2,000 mg/kg bw and RGO did not induce genotoxicity related to bacterial reverse mutations.

Moisture Adsorption Preventative Effect of Fermented Red Ginseng Extract Spherical Granules by Using Hydrophobic Compounds (홍삼의 지용성 성분을 이용한 발효홍삼 농축액 알갱이의 흡습방지 효과)

  • Shin, Myung-Gon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1153-1161
    • /
    • 2016
  • For prevention of moisture adsorption, the fermented red ginseng extract spherical granules were coated by using hydrophobic fractions. The hydrophobic parts were extracted from red ginseng such as the perfect soluble part in 90% ethanol (PSE) and non-soluble part in hot water (NSHW). The optimum operating conditions for making fermented red ginseng extract spherical granules coated with PSE were a feeding rate (FR) of 0.49 mL/min, atomization air pressure (AP) of 2.14 bar, and product temperature (PT) of $48.96^{\circ}C$., whereas conditions for granules coated with NSHW were a FR of 0.61 mL/min, AP of 2.75 bar, and PT of $46.30^{\circ}C$. The solubility of coated fermented red ginseng extract spherical granule was lower than that of not coated. The fermented red ginseng extract spherical granules coated with NSHW showed more preventative effects for moisture adsorption than those coated with PSE, although there were no differences in solubility and fluidity. In the sensory evaluation, granules coated with hydrophobic fractions extracted from red ginseng were shown to be bitterer and less soluble than those not coated spherical granules. In conclusion, fermented red ginseng extract spherical granules coated with hydrophobic extracts from red ginseng showed a preventative effect against moisture.

Changes in Chemical Components of Red Ginseng Extract Solution and Physicochemical Properties of Precipitates Formed During Pterilization and Storage (홍삼 Ext 수용액의 살균과 저장 중 성분의 변화와 생성된 침전물의 이화학적 특성)

  • 김나미;이종태;양재원
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.54-59
    • /
    • 1996
  • Red Ginseng extracts sol'n was sterilized at 85f for 20 mins and/or stored at 4$0^{\circ}C$ for 6 months and centrifuged for 20 mins at 8,500xg in order to investigate the changes in chemical components of supernatants and the properties of precipitates. Contents of crude saponin and ginsenoside-$Rb_1$, -$Rg_1$, -Re were partially decreased during heating and storage. Starch contents were decreased from 26.81% in red ginseng extracts to 17.50-8.81% in supernatants, whereas free sugar contents were increased from 15.50% to 20.29~21.35% by heating and storage. The contents of protein and minerals in supernatants were decreased, but acidic polysaccharides and polyphenol compounds were not changed. pH values of supernatants and precipitates were decreased. The absorbances of brown color precursor and brown pigment in precipitates, detected at 285 nm and 440 nm were remarkably increased. The Overa11 data suggest that precipitates in red ginseng extracts sol'n formed during steilization and storage are provably the brown pigments resulting from Maillard reaction of amino compounds with reducing sugar which could be released from starch and protein matrix and $Cu^+$, $Ca^{2+}$ and $Fe^{3+}$ ions are implicated with the reaction incorporated.

  • PDF

Reinforcements of the International Competitiveness in Korean Ginseng

  • Seo, Min-Jun;Cho, Young-Mook;Choi, Sun-Kyung;Kim, Na-Hyun;Lee, Ki-Taeg;Park, Jin-Han
    • Journal of Evidence-Based Herbal Medicine
    • /
    • v.2 no.2
    • /
    • pp.33-38
    • /
    • 2009
  • Korean Ginseng has been recognized as a representative special product in Korea and over the world for a long time, since its quality is known to be superior to Chinese, North American Ginseng. However, the export volume of Korean Ginseng products has been diminishing since 1990 because the imports of low price Chinese Ginseng and the effective marketing policy on North American Ginseng. Therefore, this study is to suggest the competitiveness reinforcement strategies through analyses of the present state and transition of the international competitiveness in Korean Ginseng. This study conducts the comparative analysis of international competitive power of ginseng between Korea and other exporting countries. There are many kinds of saponin that are competitive from a quality profile. However, price competitiveness was very low. According to the result of analysis, this study suggest the competitiveness reinforcement strategies of Korean Ginseng as follows ; First, it is necessary to establish the ginseng plan for high-quality environmentally-friendly production. Second, Korean Ginseng producer should develop various consumer-oriented products according to purchasing power and taste of target market consumers. Third, export strategies must be established by finding out every importing country’s characteristics with regard its import, circulation and consumption of the Korean Ginseng. The use of this study is to forecast useful information to concerned organization for the future policies to the ginseng products in the international market.

  • PDF

Enzyme Hydrolysates of Ginseng Marc Polysaccharides Promote the Phagocytic Activity of Macrophages Via Activation of TLR2 and Mer Tyrosine Kinase

  • Seo, Jeong Yeon;Choi, Ji Won;Lee, Jae Yeon;Park, Young Shik;Park, Yong Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.860-873
    • /
    • 2018
  • Although ginseng marc is a by-product obtained during manufacturing of various commercial ginseng products and has been routinely discarded as a waste, it still contains considerable amounts of potential bioactive compounds, including saponins and polysaccharides. Previously, we reported that ginseng oligosaccharides derived from ginseng marc polysaccharides by enzymatic hydrolysis exert immunostimulatory activities in macrophages and these activated macrophages are in turn able to inhibit the growth of skin melanoma cells by inducing apoptosis. In the present study, a more detailed investigation of the immunostimulatory activity and underlying action mechanisms of an enzymatic hydrolysate (GEH) containing these oligosaccharides derived from ginseng marc polysaccharides was performed. The levels of proinflammatory cytokines and anti-inflammatory cytokines were measured in GEH-stimulated RAW264.7 macrophages using RT-PCR analysis and ELISA. The expression levels of Toll-like receptor 2 (TLR2) and TLR4, Dectin-1, and MerTK were measured by RT-PCR analysis or western blot analysis, and the phagocytic activities of GEH-challenged bone marrow-derived macrophages toward apoptotic Jurkat cells were assayed using fluorescence microscopy. GEH induced the production of both proinflammatory cytokines $TNF-{\alpha}$ and IL-6, and anti-inflammatory cytokine IL-10 in RAW 264.7 cells. The expression of the TLR2 and MerTK mRNAs was increased upon GEH treatment. Phagocytosis of apoptotic Jurkat cells was enhanced in GEH-treated macrophages. Based on the results, this enzymatic hydrolysate (GEH) containing oligosaccharides exerts immunostimulatory effects by maintaining the balance between M1 and M2 cytokines, facilitating macrophage activation and contributing to the efficient phagocytosis of apoptotic cells. Therefore, the GEH could be developed as value-added, health-beneficial food materials with immunostimulatory effects.

Physicochemical Characteristics of 3-Year-Old Ginseng by Various Seeding Density in Direct-Sowing Culture (파종밀도에 따른 직파재배 3년근 인삼의 수량 및 품질 특성)

  • Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Hyun-Ho;Kim, Sun-Ick;Han, Seung-Ho;Lee, Ka-Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • This study was carried out to investigate the physicochemical characteristics of 3-year-old ginseng (for Samgyetang product) cultured by various seeding density in direct-sowing culture. Ginsengs were cultured by the seeding density, 275, 300, 330 352 and 396 seeds per Kan, $180{\times}90cm$ area. Survived rate (82.1%) were the highest in plot of 352 seeds sowed, length and leaf width were high in plot of 300 and 352 seeds. Root yield grain was increased with increase of the seeding density in direct-sowing culture except 352 seeds sowed. Average root weight and diameter were the highest in plot of 352 seeds sowed, 31.6 g and 18.4 mm, respectively. Crude saponin and each ginsenosides content were the highest in plot of 275 seeds sowed. Rg1 content was decreased, Rc and Rb2 content were increased with increase of the seeding density. Total soluble sugar content was the highest in plot of 330 seeds sowed and the lowest in plot of 396 seeds sowed, and oligo- and disaccaride content were high in plot of 330 and 352 seeds sowed. Reological characteristics of ginsengs cultivated according to various seeding density, hardness and springness were high and maximum fracture force was low with decrease of the seeding quantity.

Characteristic of Pork Quality during Storage Fed with Ginseng By-Products (인삼부산물 급여 수준에 따른 돈육의 저장특성)

  • 유영모;안종남;채현석;박범영;김진형;이종문;김용곤;박형기
    • Food Science of Animal Resources
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2004
  • The "Ginseng Pork" produced by feeding ginseng by-products can be a compatible product in the sense of increasing pork consumption and developing functional food in the international pork market. This experiment was conducted to produce "Ginseng Pork" with emphasis on growth performance and meat quality. Experiments were conducted in which 30 Landrace heads were fed with bark of ginseng root(BGR) or heating extracts ginseng leaves and stem(HEG). WB-shear force was not different among the treatment groups until 15 days of ageing, but pork fed with the 6% BGR showed a higher shear force at 20 day of storage at 4$^{\circ}C$. Cooking loss showed lower value for the 9% BGR group compared with the control group. At 15 day, the 3% and 9% BGR groups showed lower cooking losses than control. Pork groups fed HEG showed a significantly(p<0.05) lower TBARS values after 5 days of storage. As for VBN analysis, the feeding groups of 9% BGR and 5.5% HEG had significantly lower values at 5 and 20 days when compared to the other treatment groups. It might be concluded that the accumulation of ginseng saponin in the pork resulted in retarding the ageing and inhibiting the oxidation.

Effect of Dietary Supplementation of Red Ginseng By-product on Laying Performance, Blood Biochemistry, Serum Immunoglobulin and Microbial Population in Laying Hens

  • Kang, H.K.;Park, S.-B.;Kim, C.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1464-1469
    • /
    • 2016
  • This study was carried out to investigate the effect of dietary supplementation of red ginseng by-product (RGB) on the laying performance, blood biochemistry, and microbial population in laying hens. A total of 120 Hy-Line Brown laying hens (75 weeks old) were randomly allotted to 1 of 3 dietary treatments with 4 replicates per treatment. A commercial-type basal diet was prepared, and 2 additional diets were prepared by supplementing 5.0 or 10.0 g/kg of RGB to the basal diet at the expense of corn. The diets were fed to hens on an ad libitum basis for 4 weeks. There were no differences in feed intake, egg weight, and feed conversion ratio during 4 weeks of the feeding trial. However, hen-day egg production was significantly greater (p<0.05) for the RGB treatment groups than that for the basal treatment group. There were no differences in triglyceride, aspartate aminotransferase, and alanine aminotransferase during the 4-week feeding trial. However, RGB supplementation increased (p<0.05) the serum immunoglobulin G (IgG) and IgM content compared with basal treatment group. The total cholesterol was lower (p<0.05) in the RGB treatments groups than that in the basal treatment group. The intestinal Lactobacillus population was greater (p<0.05) for the RGB treatments groups than that for the basal treatment group. However, the numbers of Salmonella and Escherichia coli were not different among dietary treatments. During the entire experiment, there was no significant difference in egg quality among all the treatments. In conclusion, in addition to improving hen-day production, there were positive effects of dietary RGB supplementation on serum immunoglobulin and cholesterol levels in laying hens.

The Change of Ginsenoside Composition in the Ginseng (Panax ginseng) Flower Buds by the Ultrasonication and Vinegar Process

  • Gwak, Hyeon Hui;Hong, Jeong Tae;Ahn, Chang Ho;Kim, Ki Jung;Kim, Sung Gi;Yoon, Suk Soon;Im, Byung Ok;Cho, Soon Hyun;Nam, Yun Min;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.93-97
    • /
    • 2015
  • The purpose of this study was to develop a new ginseng (Panax ginseng) flower buds extract with the high concentration of ginsenoside Rg3, Rg5, Rk1, Rh1 and F4, the Red ginseng special component. Chemical transformation from the ginseng saponin glycosides to the prosapogenin was analyzed by the HPLC. The ginseng flower buds were processed at the several treatment conditions of the ultrasonication (Oscillator 600W, Vibrator 600W) and vinegar (about 14% acidity). The result of UVGFB-480 was the butanol fraction of ginseng flower buds that had been processed with ultrasonication and vinegar for 480 minutes gained the highest amount of ginsenoside Rg5 (3.548%), Rh1 (2.037%), Rk1 (1.821%), Rg3 (1.580%) and F4 (1.535%). The ginsenoside Rg5 of UVGFB-480 was found to contain 14.3 times as high as ginseng flower buds extracts (GFB, 0.249%).

Biotransformation of Liquiritin in Glycyrrhiza uralensis Fisch Extract into Liquiritigenin by Plant Crude Enzymes (식물 유래 조효소에 의한 감소 Liquiritin의 Liquiritigenin으로의 변환)

  • Park, Min-Ju;Na, In-Su;Min, Jin-Woo;Kim, Se-Yeong;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.2
    • /
    • pp.74-78
    • /
    • 2008
  • Liquiritin in licorice (Glycyrrhiza uralensis Fisch) extract was treated with three different plant crude enzymes (Prunus dulcis enzyme; PDE, P. armeniaca enzyme; PAE and P. persica enzyme; PPE) for biotransformation. The resulting product of liquiritin was analyzed by TLC and HPLC. The ${\beta}glucosidase$ activities of crude enzymes were 259.6 U/g (PDE), 407.6 U/g (PAE) and 445.8 U/g (PPE), respectively. The liquiritin was converted to liquiritigenin after 12 hours of incubation with the crude enzymes. Liquiritigenin content reached its maximum level after the treatment with PPE at $37^{\circ}C$.