• Title/Summary/Keyword: Ginseng analysis

Search Result 1,219, Processing Time 0.028 seconds

Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region

  • Li, Guisheng;Cui, Yan;Wang, Hongtao;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.326-329
    • /
    • 2017
  • Background: Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. Methods: The mitochondrial NADH dehydrogenase subunit 7 (nad7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. Results: An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. Conclusion: An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.

A network pharmacology approach to explore the potential role of Panax ginseng on exercise performance

  • Kim, Jisu;Lee, Kang Pa;Kim, Myoung-Ryu;Kim, Bom Sahn;Moon, Byung Seok;Shin, Chul Ho;Baek, Suji;Hong, Bok Sil
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.3
    • /
    • pp.28-35
    • /
    • 2021
  • [Purpose] As Panax ginseng C. A. Meyer (ginseng) exhibits various physiological activities and is associated with exercise, we investigated the potential active components of ginseng and related target genes through network pharmacological analysis. Additionally, we analyzed the association between ginseng-related genes, such as the G-protein-coupled receptors (GPCRs), and improved exercise capacity. [Methods] Active compounds in ginseng and the related target genes were searched in the Traditional Chinese Medicine Database and Analysis Platform (TCMSP). Gene ontology functional analysis was performed to identify biological processes related to the collected genes, and a compound-target network was visualized using Cytoscape 3.7.2. [Results] A total of 21 ginseng active compounds were detected, and 110 targets regulated by 17 active substances were identified. We found that the active compound protein was involved in the biological process of adrenergic receptor activity in 80%, G-protein-coupled neurotransmitter in 10%, and leucocyte adhesion to arteries in 10%. Additionally, the biological response centered on adrenergic receptor activity showed a close relationship with G protein through the beta-1 adrenergic receptor gene reactivity. [Conclusion] According to bioavailability analysis, ginseng comprises 21 active compounds. Furthermore, we investigated the ginseng-stimulated gene activation using ontology analysis. GPCR, a gene upregulated by ginseng, is positively correlated to exercise. Therefore, if a study on this factor is conducted, it will provide useful basic data for improving exercise performance and health.

Application of Near Infrared Spectroscopy for Nondestructive Evaluation of Nitrogen Content in Ginseng

  • Lin, Gou-lin;Sohn, Mi-Ryeong;Kim, Eun-Ok;Kwon, Young-Kil;Cho, Rae-Kwang
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1528-1528
    • /
    • 2001
  • Ginseng cultivated in different country or growing condition has generally different components such as saponin and protein, and it relates to efficacy and action. Protein content assumes by nitrogen content in ginseng radix. Nitrogen content could be determined by chemical analysis such as kjeldahl or extraction methods. However, these methods require long analysis time and result environmental pollution and sample damage. In this work we investigated possibility of non-destructive determination of nitrogen content in ginseng radix using near-infrared spectroscopy. Ginseng radix, root of Panax ginseng C. A. Meyer, was studied. Total 120 samples were used in this study and it was consisted of 6 sample sets, 4, 5 and 6-year-old Korea ginseng and 7, 8 and 9-year-old China ginseng, respectively. Each sample set has 20 sample. Nigrogen content was measured by electronic analysis. NIR reflectance spectra were collected over the 1100 to 2500 nm spectral region with a InfraAlyzer 500C (Bran+Luebbe, Germany) equipped with a halogen lapmp and PbS detector and data were collected every 2 nm data point intervals. The calibration models were carried out by multiple linear regression (MLR) and partial least squares (PLS) analysis using IDAS and SESAME software. Result of electronic analysis, Korean ginseng were different mean value in nitrogen content of China ginseng. Ginseng tend to generally decrease the nitrogen content according as cultivation year is over 6 years. The MLR calibration model with 8 wavelengths using IDAS software accurately predicted nitrogen contents with correlation coefficient (R) and standard error of prediction of 0.985 and 0.855%, respectively. In case of SESAME software, the MLR calibration with 9 wavelength was selected the best calibration, R and SEP were 0.972 and 0.596%, respectively. The PLSR calibration model result in 0.969 of R and 0.630 of RMSEP. This study shows the NIR spectroscopy could be applied to determine the nitrogen content in ginseng radix with high accuracy.

  • PDF

Transcriptome analysis of Panax ginseng response to high light stress

  • Jung, Je Hyeong;Kim, Ho-Youn;Kim, Hyoung Seok;Jung, Sang Hoon
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.312-320
    • /
    • 2020
  • Background: Ginseng (Panax ginseng Meyer) is an essential source of pharmaceuticals and functional foods. Ginseng productivity has been compromised by high light (HL) stress, which is one of the major abiotic stresses during the ginseng cultivation period. The genetic improvement for HL tolerance in ginseng could be facilitated by analyzing its genetic and molecular characteristics associated with HL stress. Methods: Genome-wide analysis of gene expression was performed under HL and recovery conditions in 1-year-old Korean ginseng (P. ginseng cv. Chunpoong) using the Illumina HiSeq platform. After de novo assembly of transcripts, we performed expression profiling and identified differentially expressed genes (DEGs). Furthermore, putative functions of identified DEGs were explored using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis. Results: A total of 438 highly expressed DEGs in response to HL stress were identified and selected from 29,184 representative transcripts. Among the DEGs, 326 and 114 transcripts were upregulated and downregulated, respectively. Based on the functional analysis, most upregulated and a significant number of downregulated transcripts were related to stress responses and cellular metabolic processes, respectively. Conclusion: Transcriptome profiling could be a strategy to comprehensively elucidate the genetic and molecular mechanisms of HL tolerance and susceptibility. This study would provide a foundation for developing breeding and metabolic engineering strategies to improve the environmental stress tolerance of ginseng.

Analysis of major ginsenosides in various ginseng samples

  • Lee, Dong Gu;Lee, Ju Sung;Kim, Kyung-Tack;Kim, Hyun Young;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.87-91
    • /
    • 2019
  • The contents of major ginsenosides (ginsenosides Rb1, ginsenoside Rc, ginsenoside Rd, ginsenoside Re, ginsenoside Rf, and ginsenoside Rg1) in ginseng cultivated in different areas in Korea, ginseng that underwent different cultivation processes and ages, and ginseng cultivated in different countries were determined using high-performance liquid chromatography equipped with UV/VIS detector. Ginsenoside Rc was the most abundant ginsenoside in all different ginseng samples. The highest total concentration of major ginsenosides was found in the ginseng cultivated in Jinan (0.931 mg/g) and 4-year grown red ginseng (1.785 mg/g). Major ginsenosides were the most abundant in Korean ginseng (1.264 mg/g), compared to those in Chinese and American ginseng. The results of this study showed the different contents of major ginsenosides in the ginseng samples tested and emphasized which sample could contain high yield of ginsenosides.

Effect of Ginseng on Blood Pressure: A Systematic Review and Meta-Analysis (인삼이 혈압에 미치는 영향: 체계적 문헌고찰 및 메타분석)

  • Ha, Hye Min;Oh, Da Hyun;Chun, Pusoon
    • Korean Journal of Clinical Pharmacy
    • /
    • v.26 no.2
    • /
    • pp.163-171
    • /
    • 2016
  • Objective: A meta-analysis was performed to determine effect of ginseng on blood pressure. Methods: The databases of PubMed, Embase, Cochrane Library, RISS, DBpia, KISS, and Koreamed were searched for all published studies from inception to January 2016. The following terms were used: "ginseng", "hypertension", and "blood pressure". Using the Review Manager 5, mean differences (MDs) were pooled to measure the effect of ginseng on blood pressure compared to that of placebo. Results: Eleven randomized controlled trials were included. In this meta-analysis, ginseng treatment significantly lowered systolic blood pressure (SBP) in a dose-independent way (MD: -1.99, p = 0.04). In subgroup analysis, 8-12 week consumption of ginseng achieved significantly greater reduction in SBP (MD: -3.14, p = 0.03), while single administration of ginseng failed to show BP-lowering effect. When ingested over 8-12 weeks, ginseng significantly lowered diastolic blood pressure (DBP) (MD: -1.96, p = 0.03). No significant association was found between ginseng dose and the magnitude of BP-lowering effect. However, a significant positive relationship was observed between baseline SBP level and the magnitude of SBP reduction (r = 0.848, p = 0.033). Such a relationship was not seen in DBP. Conclusion: Consumption of ginseng for 8-12 weeks achieved significant reductions in SBP and DBP in a dose-independent way. There was a significant positive relationship between baseline SBP level and the magnitude of SBP reduction.

Comparison of Phytochemical Constituents According to the Cultivation Method (Paddy Field Cultivation, Upland Field Cultivation) of Korean Fresh Ginseng (한국산 수삼의 재배환경(논, 밭)에 따른 식물화학성분 비교)

  • Her, Jae Young;Kim, Do Hyeong;Hwang, Yu Jin;Ko, Sung Kwon;Yang, Byung Wook
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 2022
  • Objectives: This study aimed to examine the changes in ingredients according to its cultivation method by examining the content of saponin and non-saponin components of ginseng. Methods: Ginseng saponin component analysis was compared and reviewed using the high-performance liquid chromatography method, and acidic polysaccharide component was measured using the carbazole sulfuric acid method. Results: The comparative analysis of ginseng saponin content of 4 and 6 years old fresh ginseng showed the following results. According to the cultivation method, upland field cultivation fresh ginseng showed higher average content of crude saponin than paddy field cultivation fresh ginseng. Whereas, paddy field cultivation fresh ginseng showed higher average content of total saponin than upland field cultivation fresh ginseng. Ginsenoside Rb1 showed higher content of paddy field cultivation fresh ginseng than upland field cultivation fresh ginseng in 6 years old ginseng. However, it showed higher content of upland field cultivation fresh ginseng than paddy field cultivation fresh ginseng in 4 years old ginseng. Additionally, ginsenoside Rg1 showed higher content of paddy field cultivation fresh ginseng than upland field cultivation fresh ginseng in 6 years old ginseng, whereas upland field cultivation fresh ginseng showed higher content of paddy field cultivation fresh ginseng in 4 years old ginseng. The effect on the content of ginseng saponins and acidic polysaccharides according to paddy field and upland field cultivation methods is considered to be small. Conclusions: The paddy field cultivation method, which is more efficient in production cost due to depletion of farmland and long-distance cultivation, is considered to be an economical cultivation method.

An approach for simultaneous determination for geographical origins of Korean Panax ginseng by UPLC-QTOF/MS coupled with OPLS-DA models

  • Song, Hyuk-Hwan;Kim, Doo-Young;Woo, Soyeun;Lee, Hyeong-Kyu;Oh, Sei-Ryang
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.341-348
    • /
    • 2013
  • Identification of the origins of Panax ginseng has been issued in Korea scientifically and economically. We describe a metabolomics approach used for discrimination and prediction of ginseng roots from different origins in Korea. The fresh ginseng roots from six ginseng cooperative associations (Gangwon, Gaeseong, Punggi, Chungbuk, Jeonbuk, and Anseong) were analyzed by UPLC-MS-based approach combined with orthogonal projections to latent structure-discriminant analysis multivariate analysis. The ginsengs from Gangwon and Gaeseong were easily differentiated. We further analyzed the metabolomics results in subgroups. Punggi, Chungbuk, Jeonbuk, and Anseong ginseng could be easily differentiated by the first two orthogonal components. As a validation of the discrimination model, we performed blind prediction tests of sample origins using an external test set. Our model predicted their geographical origins as 99.7% probability. The robust discriminatory power and statistical validity of our method suggest its general applicability for determining the origins of P. ginseng samples.

Market Segmentation Based on Attributes for the Purchase of Fresh Ginseng

  • Lee, Dongmin;Yu, Seul Gi;Jeong, Jaeseok;Moon, Junghoon;Jung, Gu Hyun
    • Agribusiness and Information Management
    • /
    • v.4 no.2
    • /
    • pp.1-13
    • /
    • 2012
  • This study aims to subdivide consumers by attributes determined mainly by consumers of fresh ginseng. It is to compare and analyze the characteristics by cluster, and to deduce the implications on distribution and marketing. For this study, a survey was conducted targeting 250 consumers of fresh ginseng. The factors were deduced through performing the exploratory factor analysis on the results of the survey, and the consumers of fresh ginseng were classified through cluster analysis. As a result of the study, the attributes considered for the purchase of fresh ginseng were condensed to the three factors: physical characteristic factor, safety factor, and cultivation indication information factor. With these as the standard, the consumers of fresh ginseng were subdivided into the three clusters: safety-oriented consumption type, label-centered consumption type, and high involvement consumption type. It was found that there were differences in demographic characteristics and attributes considered for purchase of fresh ginseng by cluster analysis. This study suggests the implications for revitalization of the fresh ginseng industry by subdividing consumers of fresh ginseng and suggesting the characteristics by cluster.

  • PDF

Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: A systematic review and meta-analysis

  • Park, Soo Hyun;Chung, Sangwon;Chung, Min-Yu;Choi, Hyo-Kyoung;Hwang, Jin-Taek;Park, Jae Ho
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.188-205
    • /
    • 2022
  • Panax ginseng is a medicinal plant is a material with various pharmacological activities and research suggests that it is particularly effective in representative metabolic diseases such as hyperglycemia, hypertension, and hyperlipidemia. Therefore, in this study, systematic review and meta-analysis were performed to investigate the comprehensive effect of P. ginseng on metabolic parameters representing these metabolic diseases. A total of 23 papers were collected for inclusion in the study, from which 27 datasets were collected. The investigational products included P. ginseng and Korean Red ginseng. Across the included studies, the dose ranged from 200 mg to 8 g and the supplementation period lasted from four to 24 weeks. The study subjects varied from healthy adults to those with diabetes, hypertension, obesity, and/or hyperlipidemia. As a result of the analysis, the levels of glucose and insulin area under the curves, % body fat, systolic and diastolic blood pressures, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were significantly reduced in the P. ginseng group as compared with in the placebo group. In conclusion, P. ginseng supplementation may act as an adjuvant to prevent the development of metabolic diseases by improving markers related to blood glucose, blood pressure, and blood lipids.