• Title/Summary/Keyword: Gingival inflammation

Search Result 183, Processing Time 0.031 seconds

Expression of Heat Shock Protein in Cytokine Stimulated PDL Cells and Inflamed Gingival Tissue (염증성 치은조직과 치주인대세포에서 Cytokine에 의해 유도되는 열충격단백 발현에 관한 연구)

  • Cho, In-Ho;Kim, Doek-Kyu;Kim, Eun-Cheol;You, Hyung-Keun;Shink, Hyung-Shin
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.103-120
    • /
    • 1998
  • Prokaryotic and eukaryotic cells respond to heat stress and other environmental abuses by synthesizing a small set of stress proteins and by inhibiting post-transcription synthesis of normal proteins. The purpose of the present study was to document the stress response produced by inflamed gingival tissue in vivo, and cytokine inducted human periodontal ligament cells. Human PDL cells were exposed to TNF-$\alpha$(1ng/ml), INF-$\gamma$(200 U/ml), LPS(100ug/ml), combination of cytokine, and SDS-PAGE gels running and Western blotting analysis was done. In vivo studies, the healthy gingival tissusse of a control group and inflamed gingival tissue of adult periodontitis were studied by immunohistochemistry and histology. The results were as follows 1. HSP 47 was distributed on basal layer in healthy gingiva, but stronger stained in basal, suprabasal, and spinous layer of inflamed gingiva. 2. HSP 47 was rare on endothelial cells and mononuclear cells in healthy gingiva, but stronger expressed in inflamed gingiva. 3. HSP 70 expression was rare on epihelium and inflammatory cells hi both healthy & inflamed gingiva. 4. HSP 70 was actively expressed on endothelial cells and inflammatory cells of capillary lumen in moderately & mild inflamend gingiva. 5. PDL cells showed low level of HSP 47 protein expression which was significantly induced by cytokine stimulation (LSP only and combination). 6. Maximum HSP 70 protein induction was seen with stimulation by a combination of the cytokine, Combination of TNF-$\alpha$, INF-$\gamma$, LPS have been shown to synergistically effects of HSP 70 expression. On the above findings, HSP Is influenced by cytokine and chronic inflammation in vivo, and may be involved in protection of tissue during periodontal inflammatiom.

  • PDF

Effects of Lipomyces starkeyi KSM 22 Glucanhydrolase on human gingival fibroblasts (Lipomyces starkeyi KSM 22 Glucanhydrolase 용액의 치은 섬유아세포에 대한 영향)

  • Yun, Hyun-Jeong;Chung, Hyun-Ju;Kim, Ok-Su;Kim, Do-Man
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.665-683
    • /
    • 2002
  • A novel glucanhydrolase from a mutant of Lipomyces starkeyi KSM 22 has additional amylase activity besides mutanolytic activity and has been suggested as promising anti-plaque agent. It has been shown effective in hydrolysis of mutan, reduction of mutan formation by Streptococcus mutans and removal pre-formed sucrose-dependent adherent microbial film and has been strongly bound to hydroxyapatitie. These in vitro properties of Lipomyces starkeyi KSM 22 glucanhydrolase are desirable for its application as a dental plaque control agent. In human experimental gingivitis model and 6 month clinical trial, mouthrinsing with Lipomyces starkeyi KSM 22 dextranase was comparable to 0.12% chlorhexidine mouthwash in inhibition of plaque accumulation and gingival inflammation and local side effect was negligible. This study was aimed to evaluate the cytotoxic effect of Lipomyces starkeyi KSM 22 glucanhydrolase on human gingival fibroblasts. Primary culture of human gingival fibroblasts at the 4th to 6th passages were used. Glucanhydrolase solution was made from lyophilized glucanhydrolase powder from a mutant of Lipomyces stakeyi KSM 22 solved in PBS and added to DMEM medium to the final concentration of 0.5, 1, and 2 unit. Cells were exposed to glucanhydrolase solution or 0.1 % chlorhexidine and the cells cultured in DMEM with 10% FBS and 1% antibiotics as control. After exposure, the morphological change, cell attachment, and cell activity by MTT assay were evaluated in 0.5, 1.5, 3, 6, 24 hours after treatment. The cell proliferation and cell activity was also evaluated at 2 and 7 days after 1 minute exposure, twice a day. The cell morphology was similar between the Lipomyces smkeyi KSM 22 glucanhydrolase groups and control group during the incubation periods, while most fibroblasts remained as round cell regardless of incubation time in the chlorhexidine group. The numbers of the attached cells in the glucanhydrolase groups were comparable to that of control and significantly higher than the chlorhexidine group. The numbers of the proliferated cells in the glucanhydrolase groups at 7 days of incubation were comparable to the control group and higher than the chlorhexidine group. The cell activity in glucanhydrolase groups paralleled with the increased cell number by attachment and proliferation. According to these results, Lipomyces starkeyj KSM 22 glucanhydrolase has little harmful effect on attachment and proliferation of human gingival fibroblasts, in contrast to 0.1% chlorhexidine which was cytotoxic to human gingival fibroblasts. Therefore this glucanhydrolase preparation is considered as a safe and promising agent for new mouthwash formula in the near future.

Effect of anti-rheumatic agents on periodontal parameters and biomarkers of inflammation: a systematic review and meta-analysis

  • Han, Ji-Young;Reynolds, Mark A.
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.1
    • /
    • pp.3-12
    • /
    • 2012
  • Purpose: Anti-rheumatic agents target common molecular pathways of inflammation in rheumatoid arthritis (RA) and periodontitis. The purpose of this study was to determine the relative effect of anti-rheumatic agents on the levels of inflammatory biomarkers and periodontal inflammation in RA patients with periodontitis. Methods: A systematic review and meta-analysis were conducted of studies comparing periodontal parameters of inflammation, such as bleeding on probing, and biomarkers of inflammation in RA patients with periodontitis and healthy adults with and without periodontitis. The search included the electronic databases MEDLINE, Cochrane Database of Systematic Reviews, and Google Scholar, inclusive through October 2011, with no language restrictions. Hand searches were conducted of the bibliographies of related journals and systematic reviews. Observational and interventional studies assessing the effects of antirheumatic therapy qualified for inclusion. Two reviewers performed independent data extraction and risk-of-bias assessment. Of the 187 identified publications, 13 studies fulfilled the inclusion criteria. Results: When compared to healthy adults without periodontitis, RA subjects were found to have significantly higher levels of bleeding on probing and limited evidence of higher levels of interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in gingival crevicular fluid and saliva. No consistent differences were found in periodontal parameters and inflammatory biomarkers between RA subjects and adults with periodontitis. Studies evaluating the effect of anti-TNF-${\alpha}$ therapy in RA subjects with periodontitis have yielded inconsistent results. Conclusions: There are limited data, however, to suggest that anti-TNF-${\alpha}$ agents can reduce local production of inflammatory cytokines and periodontal inflammation in RA patients with periodontitis.

Dec2 inhibits macrophage pyroptosis to promote periodontal homeostasis

  • He, Dawei;Li, Xiaoyan;Zhang, Fengzhu;Wang, Chen;Liu, Yi;Bhawal, Ujjal K.;Sun, Jiang
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.28-38
    • /
    • 2022
  • Purpose: Macrophages play crucial roles as early responders to bacterial pathogens and promote/ or impede chronic inflammation in various tissues. Periodontal macrophage-induced pyroptosis results in physiological and pathological inflammatory responses. The transcription factor Dec2 is involved in regulating immune function and inflammatory processes. To characterize the potential unknown role of Dec2 in the innate immune system, we sought to elucidate the mechanism that may alleviate macrophage pyroptosis in periodontal inflammation. Methods: Porphyromonas gingivalis lipopolysaccharide (LPS) was used to induce pyroptosis in RAW 264.7 macrophages. Subsequently, we established an LPS-stimulated Dec2 overexpression cellular model in macrophages. Human chronic periodontitis tissues were employed to evaluate potential changes in inflammatory marker expression and pyroptosis. Finally, the effects of Dec2 deficiency on inflammation and pyroptosis were characterized in a P. gingivalis-treated experimental periodontitis Dec2-knockout mouse model. Results: Macrophages treated with LPS revealed significantly increased messenger RNA expression levels of Dec2 and interleukin (IL)-1β. Dec2 overexpression reduced IL-1β expression in macrophages treated with LPS. Overexpression of Dec2 also repressed the cleavage of gasdermin D (GSDMD), and the expression of caspase-11 was concurrently reduced in macrophages treated with LPS. Human chronic periodontitis tissues showed significantly higher gingival inflammation and pyroptosis-related protein expression than non-periodontitis tissues. In vivo, P. gingivalis-challenged mice exhibited a significant augmentation of F4/80, tumor necrosis factor-α, and IL-1β. Dec2 deficiency markedly induced GSDMD expression in the periodontal ligament of P. gingivalis-challenged mice. Conclusions: Our findings indicate that Dec2 deficiency exacerbated P. gingivalis LPS-induced periodontal inflammation and GSDMD-mediated pyroptosis. Collectively, our results present novel insights into the molecular functions of macrophage pyroptosis and document an unforeseen role of Dec2 in pyroptosis.

Inhibitory Effects of Boesenbergia pandurata on Age-Related Periodontal Inflammation and Alveolar Bone Loss in Fischer 344 Rats

  • Kim, Haebom;Kim, Changhee;Kim, Do Un;Chung, Hee Chul;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.357-366
    • /
    • 2018
  • Periodontitis, an infective disease caused by oral pathogens and the intrinsic aging process, results in the destruction of periodontal tissues and the loss of alveolar bone. This study investigated whether Boesenbergia pandurata extract (BPE) standardized with panduratin A exerted anti-periodontitis effects, using an aging model representative of naturally occurring periodontitis. In aged rats, the oral administration of BPE ($200mg{\cdot}kg^{-1}{\cdot}day^{-1}$) for 8 weeks significantly reduced the mRNA and protein expression of $interleukin-1{\beta}$, nuclear factor-kappa B, matrix metalloproteinase (MMP)-2, and MMP-8 in gingival tissues (p < 0.01). In alveolar bone, histological analysis with staining and micro-computed tomography revealed the attenuation of alveolar bone resorption in the BPE-treated aged group, which led to a significant reduction in the mRNA and protein expression of nuclear factor of activated T-cells c1 (NFATc1), c-Fos, tartrate-resistant acid phosphatase, and cathepsin K (p < 0.01). BPE not only increased the expression of osteoblast differentiation markers, such as alkaline phosphate, and collagen type I (COL1A1), but also increased the ratio of osteoprotegerin to RANKL. Collectively, the results strongly suggested that BPE is a natural resource for the prevention or treatment of periodontal diseases.

A RADIOGRAPHICAL AND CLINICAL STUDY OF ANTERIOR TOOTH MOBILITY (전치부 치아동요에 관한 방사선학적 및 임상적 연구)

  • Lee, Kwang-Ho;Kim, Byung-Ok;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.290-300
    • /
    • 1995
  • Tooth mobility is one of the most important clinical parameters in examination, diagnosis, prognosis and treatment planning procedure. In order to determine the differences of tooth mobility according to radiographical bone level, clinical root length, clinical crown/root ratio, and bleeding on probing, 90 male adults with periodontal disease and 10 male adults with periodontal health($25{\sim}45$ years old) were selected through clinical examinations including occlusal relationship, probing depth, attachment level, and bleeding on probing. On the mandibular anterior teeth, standard periapical radiographs were taken, and tooth mobility was measured by Periotest(Siemens Co., Germany). The radiographic bone level of individual tooth was evaluated as coronal 1/3, middle 1/3, and apical 1/3 to anatomical root length, and clinical crown length from incisal edge to bone level and clinical root length from bone level to root apex were measured with Boley gauge, and subsquently clinical crown/root ratio was calculated. The difference of tooth mobility(Periotest value) according to radiographical bone level, clinical root length, clinical crown/root ratio, and bleeding on probing was statistically analyzed by unpaired Student t-test. Tooth mobility was significantly higher in bleeding group than non-bleeding group on probing in the teeth radiographic bone level of middle 1/3, with clinical root length longer than 6mm, and with clinical crown/root ratio over 0.3(p<0.01). But there was no statistical difference in tooth mobility between bleeding group and non-bleeding group on probing in the teeth with radiographic bone level of apical 1/3, with short clinical root length less than 5mm, and with clinical crown/root ratio under 0.2(p>0.05). The results note that the tooth mobility depends on clinical root length, clinical crown/root ratio and gingival inflammation, and in the teeth with relatively good alveolar bone support gingival inflammation is one of the most important factors that affect tooth mobility.

  • PDF

Effect of Garcinia mangostana L. and propolis extracts on the inhibition of inflammation and alveolar bone loss in ligature-induced periodontitis in rats

  • Sung, Se-Jin;Kang, Kyung-Min;Lee, Kyung-Hyun;Yoo, So-Young;Kook, Joong-Ki;Lee, Dae Sung;Yu, Sang-Joun
    • International Journal of Oral Biology
    • /
    • v.44 no.2
    • /
    • pp.55-61
    • /
    • 2019
  • The purpose of this study was to evaluate the effect of mangosteen extract complex (MEC; Garcinia mangostana L. and propolis extracts) on the inhibition of inflammation and prevention of alveolar bone loss using a ligature-induced periodontitis model. Rat molars were ligatured with silk, and $1{\mu}g/mL$ of lipopolysaccharide of Porphyromonas gingivalis was injected into the buccal and palatal gingivae of the teeth with or without treatment with the MEC. Changes in the expression levels of prostaglandin $E_2$ ($PGE_2$), interleukin-8 (IL-8), inducible nitric oxide synthase (iNOS), matrix metalloproteinase-8 (MMP-8), cyclooxygenase (COX)-1, and COX-2 in gingival tissues were evaluated using enzyme-linked immunosorbent assays. Alveolar bone loss around the ligated molars was examined using micro-computed tomography. The expression levels of $PGE_2$, IL-8, iNOS, MMP-8, COX-1, and COX-2 in gingival tissues were significantly reduced in the group treated with a mixture of $16{\mu}g$ of mangosteen extract powder and $544{\mu}g$ of propolis extract powder (ligation [Lig] + lipopolysaccharide extracted from P. gingivalis KCOM 2804 [L] + MEC 1:34). Additionally, alveolar bone loss was significantly reduced in the Lig + L + MEC 1:34 group compared with that in other groups. These results indicate that the MEC could be useful in preventing and treating periodontitis.