• Title/Summary/Keyword: Giant Magneto-Impedance

Search Result 18, Processing Time 0.021 seconds

Magneto-impedance effect of CoFeSiBNi amorphous magnetic films (CoFeSiBNi 아몰퍼스 합금의 자기-임피던스 효과)

  • Lee, Seung-Hun;Park, Byung-Kyu;Hwang, Sung-Woo;Moon, Sung
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.389-393
    • /
    • 2007
  • Soft ferromagnetic materials are very useful for many sensors using magnetic materials demanding high permeability, low coercivity and low hysteresis loss. Among them, FeCoSiBNi amorphous magnetic films show a good impedance change (about 5.01 %/Oe, at 10 MHz) by the exterinal magnetic field in this experiment. The magnetic films are produced by melt-spun method, one of the rapid solidification process. Ribbon shape wires were made from the films, and let them annealed in DC magnetic field to increase the maximum Giant Magneto Impedance ratio. Field annealing decreases the stress and changes the effective anisotropy. Thus, we can find that the impedance change (200.47 %) is improved and the fabricated magnetic wire has characteristics of good sensor element.

THIN FILM SENSORS FOR AUTOMOBILE

  • Taga, Yasunori
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.459-466
    • /
    • 1996
  • A great amount of effort has been devoted to the constant improvement of such basic performance as dirvability, safety and enviromental protection. As a result, the total combination of various technologies has made it possible to produce safer and more comfortable automobiles. Among these technologies, plasma and thin film techniques are mainly cocerned with sensors, optics, electronics and surface modification. This paper first describes a concept of thin film processing in materials synthesis for sensors based on particle-surface interaction during deposition to provide a long life sensor applicable to sutomobiles. Some examples of parctical application of thin films to sensors are then given. These include(1) a thin films strain gauge for gravity sensors, (2) a giant magneto resistance film for speen sensors, and (3) a Magneto-impedance sensors fordetection of low magnetic field. Further progress of sophisticated thin film technology must be considered in detail to explore advanced thin film materials science and to ensure the field reliability of future sensor devices for automobile.

  • PDF

Theoretical considerations on the giant magnetoimpedance effect in amorphous ribbons

  • Phan, Manh-Huong;Nguyen Cuong;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.60-61
    • /
    • 2003
  • Theoretical considerations on a giant magneto-impedance (GMI) effect in amorphous ribbons (i.e., thin films) have been made in terms of the expressions of effective permeability and impedance derived in the frame of classical electrodynamics and ferromagnetism. The dependence of GMI effect on the external do magnetic field (H$\_$ext/) and the frequency of alternating current are simulated and discussed in the knowledge of energy conversion consisting of the current energy loss, the ferromagnetic energy consumption, and the magnetic energy storage in the film. The obtained results are summarized as follow: (a) As frequency f< 20 ㎒, the real part of effective permeability (${\mu}$′) changes slightly. The peak of the ${\mu}$′curve always locates at H$\_$ext/=H$\_$ani/ - the anisotropy field. However, the peak value of ${\mu}$′ tends to increase with increasing frequency in the frequency range of 11-20 ㎒. (b) In the frequency range, f= 21-23 ㎒, a negative peak additionally appears. Meanwhile, both the positive and negative peak values rapidly increase with increasing frequency and their peak positions shift towards a high H$\_$ext/. (c) The positive peak value of ${\mu}$′ starts to decrease at f= 29 ㎒ and its negative peak does so at about 35 ㎒. Then, both peaks keep such a tendency and their peak positions move to high H$\_$ext/, as increasing frequency. (d) The dependence of the imaginary part of effective permeability (${\mu}$") on the external dc magnetic field and the frequency of the alternating field indicates that there is only one peak involved in ${\mu}$" for the whole frequency range. (e) The impedance vs. magnetic field curves at various frequencies show that there is a critical value of frequency around f= 18-19 ㎒ where the transition between two frequency regimes occurs; the one (low frequency) in which ${\mu}$′ predominantly contributes to the GMI effect and the other (high frequency) in which ${\mu}$" determines the GMI effect.

  • PDF

Effect of Annealing Temperature on the Permeability and Magneto-Impedance Behaviors of Fe68.5Mn5Si13.5B9Nb3Cu1 Amorphous Alloy

  • Le Anh-Than;Ha, Nguyen Duy;Kim, Chong-Oh;Rhee, Jang-Roh;Chau Nguyen;Hoa Nguyen Quang;Tho Nguyen Due;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.55-59
    • /
    • 2006
  • The effect of annealing temperature on the permeability and giant magneto-impedance (GMI) behaviors of $Fe_{68.5}Mn_{5}Si_{13.5}B_9Nb_3Cu_1$ amorphous alloy has been systematically investigated. The nanocrystalline $Fe_{68.5}Mn_{5}Si_{13.5}B_9Nb_3Cu_1$ alloys consisting of ultra-fine $(Fe,Mn)_3Si$ grains embedded in an amorphous matrix were obtained by annealing their precursor alloy at the temperature range from $500^{\circ}C\;to\;600^{\circ}C$ for 1 hour in vacuum. The permeability and GMI profiles were measured as a function of external magnetic field. It was found that the increase of both the permeability and the GMI effect with increasing annealing temperature up to $535^{\circ}C$ was observed and ascribed to the ultrasoft magnetic properties in the sample, whereas an opposite tendency was found when annealed at $600^{\circ}C$ which is due to the microstructural changes caused by high-temperature annealing. The study of temperature dependence on the permeability and GMI effect showed some insights into the nature of the magnetic exchange coupling between nanocrystallized grains through the amorphous boundaries in nanocrystalline magnetic materials.

Microstructure and Magnetic Characteristics of Mn-doped Finemet Nanocomposites

  • Le, Anh-Tuan;Kim, Chong-Oh;Chau Nguyen;Tho Nguyen Duc;Hoa Nguyen Quang;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • A thorough study about the influences of Mn substitution for Fe on the microstructure and magnetic characteristics of $Fe_{73.5-x}Mn-{x}Si_{13.5}B_{9}Nb_{3}Cu_1$ (x = 1, 3, 5) alloys prepared by the melt-spinning technique has been performed. Nanocomposites composed of nanoscale $(Fe,Mn)_{3}Si$ magnetic phase embedded in an amorphous matrix were obtained by annealing their amorphous alloys at $535^{\circ}C$ for 1 hour. The addition of Mn causes a slight increase in the mean grain size. The Curie temperatures of the initial amorphous phase and of the nanocrystals phase decreased, while the Curie temperature of the remaining amorphous phase remained nearly constant with increasing Mn content. Soft magnetic properties of the crystallized samples have been significantly improved by a proper thermal treatment. Accordingly, the giant magnetoimpedance effect is observed and ascribed to the increase of the magnetic permeability, and the decrease of the coercivity of the samples. The increased magnetic permeability is resulted from a decrease in the magnetocrystalline anisotropy and saturation magnetostriction.

Ultra Low Field Sensor Using GMI Effect in NiFe/Cu Wires

  • Kollu, Pratap;Kim, Doung-Young;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 2007
  • A highly sensitive magnetic sensor using the Giant MagnetoImpedance effect has been developed. The sensor performance is studied and estimated. The sensor circuitry consists of a square wave generator (driving source), a sensing element in a form of composite wire of a 25 $\mu$m copper core electrodeposited with a thin layer of soft magnetic material ($Ni_{80}Fe_{20}$), and two amplifier stages for improving the gain, switching mechanism, scaler circuit, an AC power source driving the permeability of the magnetic coating layer of the sensing element into a dynamic state, and a signal pickup LC circuit formed by a pickup coil and an capacitor. Experimental studies on sensor have been carried out to investigate the key parameters in relation to the sensor sensitivity and resolution. The results showed that for high sensitivity and resolution, the frequency and magnitude of the ac driving current through the sensing element each has an optimum value, the resonance frequency of the signal pickup LC circuit should be equal to or twice as the driving frequency on the sensing element, and the anisotropy of the magnetic coating layer of the sensing wire element should be longitudinal.

AFM Study and Magnetic Properties of Nanocrystalline Fe73.5-xCrxSi13.5B9Nb3Au1 (x=1~5) Alloys

  • Le, Anh-Than;Chau Nguyen;Cuong Nguyen Duy;The Ngo Duc;Kim, Chong-Oh;Rhee, Jang-Roh;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 2006
  • In this paper, the influences of microstructural and surface morphological developments on the soft magnetic properties and giant magneto-impedance (GMI) effect of the $Fe_{73.5-x}Cr_{x}Si_{13.5}B_{9}Nb_{3}Au_1$ (x = 1, 2, 3, 4, 5) alloys have been presented. It was found that the Cr addition slightly decreased the mean grain size of $\alpha-Fe(Si)$ grains. AFM results indicate a large variation of surface morphology of density and size of protrusions along the ribbon plane due to microstructural changes caused by thermal annealing with increasing Cr content. Ultrasoft magnetic properties of the nanocrystallized samples were noticeably enhanced by properly heat treatments at $T_a=540^{\circ}C$ such as an increase of the magnetic permeability and the decrease of coercivity, which is likely due to the formation of nanoscale $\alpha-Fe(Si)$ phase which reduced the magnetoelastic anisotropy of samples. Accordingly, the GMI effect was observed in the annealed samples. The correlation between the microstructure, surface morphology, and soft magnetic properties were explained by nucleation and growth model.