• 제목/요약/키워드: Gesture Recognition Technology

Search Result 144, Processing Time 0.027 seconds

A Study of the Physical Experience Using Serious Game Design Traffic Safety Education for Children applied using 3D Depth Gesture Recognition Technology (3차원 동작인식기술을 적용한 어린이 교통안전교육 체감형 기능성 게임디자인 연구)

  • Jang, Chang-Ik
    • Journal of Korea Game Society
    • /
    • v.12 no.6
    • /
    • pp.5-14
    • /
    • 2012
  • The purpose of this paper is to demonstrate how three-dimensional gesture recognition technology, in children's traffic safety programs, can be an effective solution for instructing children in the safest ways to interact with traffic. In terms of traffic accidents, walking unaccompanied is the most dangerous traffic related activity for children. By using a three-dimensional serous game training program that implements gesture recognition, more accurate real life scenarios can be implemented in existing children's traffic training programs. The implementation of this technology will increase the possibility of changing the habits and attitudes of children, which in turn will lower the amount of walking related traffic accidents in children.

Development of Gesture Recognition-Based 3D Serious Games (치매 예방을 위한 제스처 인식 기반 3D 기능성 게임 개발)

  • He, Guan-Feng;Park, Jin-Woong;Kang, Sun-Kyung;Jung, Sung-Tae
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.103-113
    • /
    • 2011
  • In this paper, we propose gesture recognition based 3D Serious Games to prevent dementia. These games are designed to enhance the effect of preventing dementia by helping increase brain usage and physical activities of users by the entire body gesture recognition. The existing cameras used for gesture recognition technology are limited in terms of recognition ratio and operation range. For more stable recognition of the body gestures, we recognized users with a 3D depth camera, obtained joint data of users, and analyzed joint motions to recognize gestures of the body. Game contents were designed to practice memory, reasoning, calculation, and spatial recognition focusing on the atrophy of brain cells as a major cause of dementia. Game results of each user were saved and analyzed to measure how their recognition skills improved.

A Memory-efficient Hand Segmentation Architecture for Hand Gesture Recognition in Low-power Mobile Devices

  • Choi, Sungpill;Park, Seongwook;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.473-482
    • /
    • 2017
  • Hand gesture recognition is regarded as new Human Computer Interaction (HCI) technologies for the next generation of mobile devices. Previous hand gesture implementation requires a large memory and computation power for hand segmentation, which fails to give real-time interaction with mobile devices to users. Therefore, in this paper, we presents a low latency and memory-efficient hand segmentation architecture for natural hand gesture recognition. To obtain both high memory-efficiency and low latency, we propose a streaming hand contour tracing unit and a fast contour filling unit. As a result, it achieves 7.14 ms latency with only 34.8 KB on-chip memory, which are 1.65 times less latency and 1.68 times less on-chip memory, respectively, compare to the best-in-class.

Survey: Gesture Recognition Techniques for Intelligent Robot (지능형 로봇 구동을 위한 제스처 인식 기술 동향)

  • Oh Jae-Yong;Lee Chil-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.771-778
    • /
    • 2004
  • Recently, various applications of robot system become more popular in accordance with rapid development of computer hardware/software, artificial intelligence, and automatic control technology. Formerly robots mainly have been used in industrial field, however, nowadays it is said that the robot will do an important role in the home service application. To make the robot more useful, we require further researches on implementation of natural communication method between the human and the robot system, and autonomous behavior generation. The gesture recognition technique is one of the most convenient methods for natural human-robot interaction, so it is to be solved for implementation of intelligent robot system. In this paper, we describe the state-of-the-art of advanced gesture recognition technologies for intelligent robots according to three methods; sensor based method, feature based method, appearance based method, and 3D model based method. And we also discuss some problems and real applications in the research field.

A new study on hand gesture recognition algorithm using leap motion system (Leap Motion 시스템을 이용한 손동작 인식기반 제어 인터페이스 기술 연구)

  • Nam, Jae-Hyun;Yang, Seung-Hun;Hu, Woong;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1263-1269
    • /
    • 2014
  • As rapid development of new hardware control interface technology, new concepts have been being proposed and emerged. In this paper, a new approach based on leap motion system is proposed. While we employ a position information from sensor, the hand gesture recognition is suggested with the pre-defined patterns. To do this, we design a recognition algorithm with hand gesture and finger patterns. We apply the proposed scheme to 3-dimensional avatar controling and editing software tool for making animation in the cyber space as a representative application. This proposed algorithm can be used to control computer systems in medical treatment, game, education and other various areas.

AdaBoost-Based Gesture Recognition Using Time Interval Trajectory Features (시간 간격 특징 벡터를 이용한 AdaBoost 기반 제스처 인식)

  • Hwang, Seung-Jun;Ahn, Gwang-Pyo;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.247-254
    • /
    • 2013
  • The task of 3D gesture recognition for controlling equipments is highly challenging due to the propagation of 3D smart TV recently. In this paper, the AdaBoost algorithm is applied to 3D gesture recognition by using Kinect sensor. By tracking time interval trajectory of hand, wrist and arm by Kinect, AdaBoost algorithm is used to train and classify 3D gesture. Experimental results demonstrate that the proposed method can successfully extract trained gestures from continuous hand, wrist and arm motion in real time.

Recognition of hand gestures with different prior postures using EMG signals (사전 자세에 따른 근전도 기반 손 제스처 인식)

  • Hyun-Tae Choi;Deok-Hwa Kim;Won-Du Chang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.51-56
    • /
    • 2023
  • Hand gesture recognition is an essential technology for the people who have difficulties using spoken language to communicate. Electromyogram (EMG), which is often utilized for hand gesture recognition, is expected to have difficulties in hand gesture recognition because its people's movements varies depending on prior postures, but the study on this subject is rare. In this study, we conducted tests to confirm if the prior postures affect on the accuracy of gesture recognition. Data were recorded from 20 subjects with different prior postures. We achieved average accuracies of 89.6% and 52.65% when the prior states between the training and test data were unique and different, respectively. The accuracy was increased when both prior states were considered, which confirmed the need to consider a variety of prior states in hand gesture recognition with EMG.

An Efficient Hand Gesture Recognition Method using Two-Stream 3D Convolutional Neural Network Structure (이중흐름 3차원 합성곱 신경망 구조를 이용한 효율적인 손 제스처 인식 방법)

  • Choi, Hyeon-Jong;Noh, Dae-Cheol;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.66-74
    • /
    • 2018
  • Recently, there has been active studies on hand gesture recognition to increase immersion and provide user-friendly interaction in a virtual reality environment. However, most studies require specialized sensors or equipment, or show low recognition rates. This paper proposes a hand gesture recognition method using Deep Learning technology without separate sensors or equipment other than camera to recognize static and dynamic hand gestures. First, a series of hand gesture input images are converted into high-frequency images, then each of the hand gestures RGB images and their high-frequency images is learned through the DenseNet three-dimensional Convolutional Neural Network. Experimental results on 6 static hand gestures and 9 dynamic hand gestures showed an average of 92.6% recognition rate and increased 4.6% compared to previous DenseNet. The 3D defense game was implemented to verify the results of our study, and an average speed of 30 ms of gesture recognition was found to be available as a real-time user interface for virtual reality applications.

A Framework for 3D Hand Gesture Design and Modeling (삼차원 핸드 제스쳐 디자인 및 모델링 프레임워크)

  • Kwon, Doo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5169-5175
    • /
    • 2013
  • We present a framework for 3D hand gesture design and modeling. We adapted two different pattern matching techniques, Dynamic Time Warping (DTW) and Hidden Markov Models (HMMs), to support the registration and evaluation of 3D hand gestures as well as their recognition. One key ingredient of our framework is a concept for the convenient gesture design and registration using HMMs. DTW is used to recognize hand gestures with a limited training data, and evaluate how the performed gesture is similar to its template gesture. We facilitate the use of visual sensors and body sensors for capturing both locative and inertial gesture information. In our experimental evaluation, we designed 18 example hand gestures and analyzed the performance of recognition methods and gesture features under various conditions. We discuss the variability between users in gesture performance.

Hand Tracking and Hand Gesture Recognition for Human Computer Interaction

  • Bai, Yu;Park, Sang-Yun;Kim, Yun-Sik;Jeong, In-Gab;Ok, Soo-Yol;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.182-193
    • /
    • 2011
  • The aim of this paper is to present the methodology for hand tracking and hand gesture recognition. The detected hand and gesture can be used to implement the non-contact mouse. We had developed a MP3 player using this technology controlling the computer instead of mouse. In this algorithm, we first do a pre-processing to every frame which including lighting compensation and background filtration to reducing the adverse impact on correctness of hand tracking and hand gesture recognition. Secondly, YCbCr skin-color likelihood algorithm is used to detecting the hand area. Then, we used Continuously Adaptive Mean Shift (CAMSHIFT) algorithm to tracking hand. As the formula-based region of interest is square, the hand is closer to rectangular. We have improved the formula of the search window to get a much suitable search window for hand. And then, Support Vector Machines (SVM) algorithm is used for hand gesture recognition. For training the system, we collected 1500 hand gesture pictures of 5 hand gestures. Finally we have performed extensive experiment on a Windows XP system to evaluate the efficiency of the proposed scheme. The hand tracking correct rate is 96% and the hand gestures average correct rate is 95%.