• Title/Summary/Keyword: Germline mutations

Search Result 36, Processing Time 0.022 seconds

Three novel germline mutations in MLH1 and MSH2 in families with Lynch syndrome living on Jeju island, Korea

  • Kim, Young-Mee;Choe, Chang-Gyu;KimCho, So-Mi;Jung, In-Ho;Chang, Won-Young;Cho, Moon-Jae
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.693-697
    • /
    • 2010
  • Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome characterized by predisposition to early-onset cancers. HNPCC is caused by heterozygous loss-of-function mutations within the mismatch repair genes MLH1, MSH2, MSH6, PMS1, and PMS2. We genotyped the MLH1 and MSH2 genes in patients suffering from Lynch syndrome and in 11 unrelated patients who were diagnosed with colorectal cancer and had subsequently undergone surgery. Five Lynch syndrome patients carried germline mutations in MLH1 or MSH2. Two of these were identified as known mutations in MLH1: deletion of exon 10 and a point mutation (V384D). The remaining three patients exhibited novel mutations: a duplication (937_942dupGAAGTT) in MLH1; deletion of exons 8, 9, and 10; and a point mutation in MLH1 (F396I) combined with multiple missense mutations in MSH2 (D295G, K808E, Q855P, and I884T). The findings underline the importance of efficient pre-screening of conspicuous cases.

Detection of Germline Mutations in Argentine Retinoblastoma Patients: Low and Full Penetrance Retinoblastoma Caused by the Same Germline Truncating Mutation

  • Dalamon, Viviana;Surace, Ezequiel;Giliberto, Florencia;Ferreiro, Veronica;Fernandez, Cecilia;Szijan, Irene
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.246-253
    • /
    • 2004
  • Constitutional RB1 gene mutations were studied in a series of 21 families with unilateral and bilateral retinoblastoma patients. Peripheral blood lymphocytes were analyzed by "exon by exon" PCR-heteroduplex and sequencing. Mutations were identified in 6 (29%) of the patients. One mutation corresponded to an intronic polymorphism in g.174351T > A. The other five mutations resulted C to T exonic transitions, four were CGA sequences (g.65386, g.150037 in two patients, and g.162237), creating stop codons and presumably truncated proteins. The fifth one was new and resulted in alanine to valine substitution (g.73774). Two patients had the same the germline truncated mutation (g.150037C > T), one with a familial bilateral early onset retinoblastoma and one with a sporadic unilateral late onset retinoblastoma. The later type has not been previously described. This finding is discussed in the genotype/phenotype correlation context. Additionally, a single nucleotide change was found in six studied samples, where a C to T homozygous transversion was identified in intron 26 (IVS26 + 28). It is worthy the non concordance of the nucleotide with the published sequence. This analysis proved to be a useful method for the detection of mutations in the RB1 gene, and contributed to the adequate genetic counseling to patients and relatives.

Analysis of Small Fragment Deletions of the APC gene in Chinese Patients with Familial Adenomatous Polyposis, a Precancerous Condition

  • Chen, Qing-Wei;Zhang, Xiao-Mei;Zhou, Jian-Nong;Zhou, Xin;Ma, Guo-Jian;Zhu, Ming;Zhang, Yuan-Ying;Yu, Jun;Feng, Ji-Feng;Chen, Sen-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4915-4920
    • /
    • 2015
  • Background: : Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease mainly caused by mutations of the adenomatous polyposis coli (APC) gene with almost complete penetrance. These colorectal polyps are precancerous lesions that will inevitable develop into colorectal cancer at the median age of 40-year old if total proctocolectomy is not performed. So identification of APC germline mutations has great implications for genetic counseling and management of FAP patients. In this study, we screened APC germline mutations in Chinese FAP patients, in order to find novel mutations and the APC gene germline mutation characteristics of Chinese FAP patients. Materials and Methods: The FAP patients were diagnosed by clinical manifestations, family histories, endoscope and biopsy. Then patients peripheral blood samples were collected, afterwards, genomic DNA was extracted. The mutation analysis of the APC gene was conducted by direct polymerase chain reaction (PCR) sequencing for micromutations and multiplex ligation-dependent probe amplification (MLPA) for large duplications and/or deletions. Results: We found 6 micromutations out of 14 FAP pedigrees, while there were no large duplications and/or deletions found. These germline mutations are c.5432C>T(p. Ser1811Leu), two c.3926_3930delAAAAG (p.Glu1309AspfsX4), c.3921_3924delAAAA (p.Ile1307MetfsX13), c3184_3187delCAAA(p.Gln1061AspfsX59) and c4127_4126delAT (p.Tyr1376LysfsX9), respectively, and all deletion mutations resulted in a premature stop codon. At the same time, we found c.3921_3924delAAAA and two c.3926_3930delAAAAG are located in AAAAG short tandem repeats, c3184_3187delCAAA is located in the CAAA interrupted direct repeats, and c4127_4128 del AT is located in the 5'-CCTGAACA-3', 3'-ACAAGTCC-5 palindromes (inverted repeats) of the APC gene. Furthermore, deletion mutations are mostly located at condon 1309. Conclusions: Though there were no novel mutations found as the pathogenic gene of FAP in this study, we found nucleotide sequence containing short tandem repeats and palindromes (inverted repeats), especially the 5 bp base deletion at codon 1309, are mutations in high incidence area in APC gene,.

Smith-Kingsmore syndrome: The first report of a Korean patient with the MTOR germline mutation c.5395G>A p.(Glu1799Lys)

  • Lee, Dohwan;Jang, Ja-Hyun;Lee, Cha Gon
    • Journal of Genetic Medicine
    • /
    • v.16 no.1
    • /
    • pp.27-30
    • /
    • 2019
  • Smith-Kingsmore syndrome (SKS; OMIM 616638), also known as macrocephaly-intellectual disability-neurodevelopmental disorder-small thorax syndrome (MINDS; ORPHA 457485), is a rare autosomal dominant disorder, the prevalence of which is not known. It is caused by a heterozygous germline mutation in MTOR (OMIM 601231). Ten different MTOR germline mutations in 27 individuals have been reported in the medical literature to date. These were all gain-of-function missense variants, and about half of the 27 individuals had c.5395G>A p.(Glu1799Lys) in MTOR. Here, I report for the first time a Korean patient with the heterozygous germline mutation c.5395G>A p.(Glu1799Lys) in MTOR. It was found to be a de novo mutation, which was identified by whole-exome sequencing and confirmed by Sanger sequencing. The patient showed typical clinical features of SKS, including macrocephaly/megalencephaly; moderate intellectual disability; seizures; behavioral problems; and facial dysmorphic features of curly hair, frontal bossing, midface hypoplasia, and hypertelorism.

Germline Variations of Apurinic/Apyrimidinic Endonuclease 1 (APEX1) Detected in Female Breast Cancer Patients

  • Ali, Kashif;Mahjabeen, Ishrat;Sabir, Maimoona;Baig, Ruqia Mehmood;Zafeer, Maryam;Faheem, Muhammad;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7589-7595
    • /
    • 2014
  • Apurinic/apyrimidinic endonuclease 1 (APEX1) is a multifunctional protein which plays a central role in the BER pathway. APEX1 gene being highly polymorphic in cancer patients and has been indicated to have a contributive role in Apurinic/apyrimidinic (AP) site accumulation in DNA and consequently an increased risk of cancer development. In this case-control study, all exons of the APEX1 gene and its exon/intron boundaries were amplified in 530 breast cancer patients and 395 matched healthy controls and then analyzed by single-stranded conformational polymorphism followed by sequencing. Sequence analysis revealed fourteen heterozygous mutations, seven 5'UTR, one 3'UTR, two intronic and four missense. Among identified mutations one 5'UTR (rs41561214), one 3'UTR (rs17112002) and one missense mutation (Ser129Arg, Mahjabeen et al., 2013) had already been reported while the remaining eleven mutations. Six novel mutations (g.20923366T>G, g.20923435G>A, g.20923462G>A, g.20923516G>A, 20923539G>A, g.20923529C>T) were observed in 5'UTR region, two (g.20923585T>G, g.20923589T>G) in intron1 and three missense (Glu101Lys, Ala121Pro, Ser123Trp) in exon 4. Frequencues of 5'UTR mutations; g.20923366T>G, g.20923435G>A and 3'UTR (rs17112002) were calculated as 0.13, 0.1 and 0.1 respectively. Whereas, the frequency of missense mutations Glu101Lys, Ser123Trp and Ser129Arg was calculated as 0.05. A significant association was observed between APEX1 mutations and increased breast cancer by ~9 fold (OR=8.68, 95%CI=2.64 to 28.5) with g.20923435G>A (5'UTR), ~13 fold (OR= 12.6, 95%CI=3.01 to 53.0) with g.20923539G>A (5'UTR) and~5 fold increase with three missense mutations [Glu101Lys (OR=4.82, 95%CI=1.97 to 11.80), Ser123Trp (OR=4.62, 95%CI=1.7 to 12.19), Ser129Arg (OR=4.86, 95%CI=1.43 to 16.53)]. The incidence of observed mutations was found higher in patients with family history and with early menopause. In conclusion, our study demonstrates a significant association between germ line APEX1 mutations and breast cancer patients in the Pakistani population.

The Clinical, Molecular, and Mechanistic Basis of RUNX1 Mutations Identified in Hematological Malignancies

  • Yokota, Asumi;Huo, Li;Lan, Fengli;Wu, Jianqiang;Huang, Gang
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • RUNX1 plays an important role in the regulation of normal hematopoiesis. RUNX1 mutations are frequently found and have been intensively studied in hematological malignancies. Germline mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). Somatic mutations of RUNX1 are observed in various types of hematological malignancies, such as AML, acute lymphoblastic leukemia (ALL), myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), and congenital bone marrow failure (CBMF). Here, we systematically review the clinical and molecular characteristics of RUNX1 mutations, the mechanisms of pathogenesis caused by RUNX1 mutations, and potential therapeutic strategies to target RUNX1-mutated cases of hematological malignancies.

Screening of 185DelAG, 1014DelGT and 3889DelAG BRCA1 Mutations in Breast Cancer Patients from North-East India

  • Hansa, Jagadish;Kannan, Ravi;Ghosh, Sankar Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5871-5874
    • /
    • 2012
  • Around 1.35 million people of worldwide suffer from breast cancer each year, whereas in India, 1 in every 17 women develops the disease. Mutations of the Breast Cancer 1 (BRCA1) gene account for the majority of breast/ovarian cancer families. The purpose of study was to provide a prevalence of BRCA1 germline mutations in the North-East Indian population. In relation to the personal and family history with the breast cancer, we found mutations in 6.25% and 12.5% respectively. Three mutations, 185DelAG, 1014DelGT and 3889DelAG, were observed in our North-East Indian patients in exons 2 and 11, resulting in truncation of the BRCA1 protein by forming stop codons individually at amino acid positions 39, 303 and 1265. Our results point to a necessity for an extensive mutation screening study of high risk breast cancer cases in our North-East Indian population, which will provide better decisive medical and surgical preventive options.

Genetic and clinical characteristics of Korean patients with neurofibromatosis type 2

  • Kim, Hye-ji;Seo, Go Hun;Kim, Yoon Myung;Kim, Gu-Hwan;Seo, Eul-Ju;Ra, Young-Shin;Choi, Jin-Ho;Yoo, Han-Wook;Lee, Beom Hee
    • Journal of Genetic Medicine
    • /
    • v.14 no.2
    • /
    • pp.56-61
    • /
    • 2017
  • Purpose: Neurofibromatosis type 2 (NF2) is characterized by multiple tumors, including vestibular schwannoma (VS) and others affecting cranial and peripheral nerves. NF2 is caused by mutation of the NF2 gene. The mutation spectrum of NF2 has not been characterized in Korean patients. In the current study, the clinical and genetic characteristics of Korean NF2 patients were analyzed. Materials and Methods: Twenty-five unrelated Korean families were enrolled according to the Manchester criteria. Genetic analysis was performed by direct sequencing and multiplex ligation-dependent probe amplification methods using genomic DNA from peripheral lymphocytes or tumor tissues. Results: All patients had bilateral/unilateral VS and/or other cranial and peripheral nerve tumors. Two patients were familial cases and the other 24 patients were sporadic. Germline NF2 mutations were detected in peripheral lymphocytes from both familial cases, but only in 26.1% of the 23 sporadic families. Somatic mutations were also found in tumor tissues from two of the sporadic families. These somatic mutations were not found in peripheral lymphocytes. A total of 10 different mutations including 2 novel mutations were found in 40.0% of studied families. Five mutations (50.0%) were located in exon 6 of NF2, the FERM domain coding region. Conclusion: Family history was an important factor in identifying germline NF2 mutations. Further study is required to investigate whether exon 6 is a mutation hotspot in Korean NF2 patients and its correlation to phenotypic severity.

Mechanistic Target of Rapamycin Pathway in Epileptic Disorders

  • Kim, Jang Keun;Lee, Jeong Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.272-287
    • /
    • 2019
  • The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.

Identification of Germline BRCA1 Mutations among Breast Cancer Families in Northeastern Iran

  • Kooshyar, Mohammad Mahdi;Nassiri, Mohammadreza;Mahdavi, Morteza;Doosti, Mohammad;Parizadeh, Amirreza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4339-4345
    • /
    • 2013
  • Background: The purpose of this study was to evaluate the prevalence of BRCA1 (MIM: 113705) founder mutations in familial breast cancer (BC) patients with high risks in Iran. BRCA1 is among the cancer susceptibility genes best known for high penetrance mutations. BRCA1 genotyping is now used to determine patient counseling, management decisions, and prognosis of this syndrome. Materials and Method: Thirty nine patients with clinical BC and 29 high risk healthy women, related to the patients, participated in the study. DNA from blood samples was extracted and analyzed by PCR and SSCP methods in order to find 185delAG and 5382insC founder mutations. In addition, a 251bp fragment of BRCA1's exon 11 was amplified and analyzed for determination of new mutations. Results: The data indicated the presence of 185delAG and 5382insC founder mutations in both groups studied. Two out of 39 BC patients (5.1%) and one out of 29 relatives (3.4%) were suspected to be carriers of 185delAG mutations. However, we found only one patient (2.6%) to be a carrier of a 5382insC mutation. Also, 2 women (5.1%) of the patient group and 3 n (10.3%) of relatives group were identified as carriers of unclarified mutations in the 251bp fragment of the BRCA1 gene. The carriers of BRCA1 founder mutations have a high lifetime risk of breast cancer. Conclusions: Therefore, these data are useful in counseling of individuals with a significant family history of breast cancer.