DOI QR코드

DOI QR Code

The Clinical, Molecular, and Mechanistic Basis of RUNX1 Mutations Identified in Hematological Malignancies

  • Yokota, Asumi (Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center) ;
  • Huo, Li (Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center) ;
  • Lan, Fengli (Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center) ;
  • Wu, Jianqiang (Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center) ;
  • Huang, Gang (Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center)
  • Received : 2019.11.05
  • Accepted : 2019.12.12
  • Published : 2020.02.29

Abstract

RUNX1 plays an important role in the regulation of normal hematopoiesis. RUNX1 mutations are frequently found and have been intensively studied in hematological malignancies. Germline mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). Somatic mutations of RUNX1 are observed in various types of hematological malignancies, such as AML, acute lymphoblastic leukemia (ALL), myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), and congenital bone marrow failure (CBMF). Here, we systematically review the clinical and molecular characteristics of RUNX1 mutations, the mechanisms of pathogenesis caused by RUNX1 mutations, and potential therapeutic strategies to target RUNX1-mutated cases of hematological malignancies.

Keywords

References

  1. Antony-Debre, I., Duployez, N., Bucci, M., Geffroy, S., Micol, J.B., Renneville, A., Boissel, N., Dhedin, N., Rea, D., Nelken, B., et al. (2016). Somatic mutations associated with leukemic progression of familial platelet disorder with predisposition to acute myeloid leukemia. Leukemia 30, 999-1002. https://doi.org/10.1038/leu.2015.236
  2. Baer, C., Muehlbacher, V., Kern, W., Haferlach, C., and Haferlach, T. (2018). Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2. Haematologica 103, e348-e350. https://doi.org/10.3324/haematol.2017.187302
  3. Beer, P.A., Delhommeau, F., LeCouedic, J.P., Dawson, M.A., Chen, E., Bareford, D., Kusec, R., McMullin, M.F., Harrison, C.N., Vannucchi, A.M., et al. (2010). Two routes to leukemic transformation after a JAK2 mutationpositive myeloproliferative neoplasm. Blood 115, 2891-2900. https://doi.org/10.1182/blood-2009-08-236596
  4. Bejar, R., Stevenson, K.E., Caughey, B.A., Abdel-Wahab, O., Steensma, D.P., Galili, N., Raza, A., Kantarjian, H., Levine, R.L., Neuberg, D., et al. (2012). Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J. Clin. Oncol. 30, 3376-3382. https://doi.org/10.1200/JCO.2011.40.7379
  5. Branford, S., Wang, P., Yeung, D.T., Thomson, D., Purins, A., Wadham, C., Shahrin, N.H., Marum, J.E., Nataren, N., Parker, W.T., et al. (2018). Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood 132, 948-961.
  6. Bullinger, L., Dohner, K., and Dohner, H. (2017). Genomics of acute myeloid leukemia diagnosis and pathways. J. Clin. Oncol. 35, 934-946. https://doi.org/10.1200/JCO.2016.71.2208
  7. Cai, X., Gao, L., Teng, L., Ge, J., Oo, Z.M., Kumar, A.R., Gilliland, D.G., Mason, P.J., Tan, K., and Speck, N.A. (2015). Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell 17, 165-177. https://doi.org/10.1016/j.stem.2015.06.002
  8. Cancer Genome Atlas Research Network, Ley, T.J., Miller, C., Ding, L., Raphael, B.J., Mungall, A.J., Robertson, A., Hoadley, K., Triche, T.J., Jr., Laird, P.W., et al. (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059-2074. https://doi.org/10.1056/NEJMoa1301689
  9. Cavalcante de Andrade Silva, M., Krepischi, A.C.V., Kulikowski, L.D., Zanardo, E.A., Nardinelli, L., Leal, A.M., Costa, S.S., Muto, N.H., Rocha, V., and Velloso, E. (2018). Deletion of RUNX1 exons 1 and 2 associated with familial platelet disorder with propensity to acute myeloid leukemia. Cancer Genet. 222-223, 32-37. https://doi.org/10.1016/j.cancergen.2018.01.002
  10. Cazzola, M., Della Porta, M.G., and Malcovati, L. (2013). The genetic basis of myelodysplasia and its clinical relevance. Blood 122, 4021-4034.
  11. Cerquozzi, S. and Tefferi, A. (2015). Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 5, e366. https://doi.org/10.1038/bcj.2015.95
  12. Chao, M.M., Thomay, K., Goehring, G., Wlodarski, M., Pastor, V., Schlegelberger, B., Schindler, D., Kratz, C.P., and Niemeyer, C. (2017). Mutational spectrum of Fanconi anemia associated myeloid neoplasms. Klin. Padiatr. 229, 329-334. https://doi.org/10.1055/s-0043-117046
  13. Chen, C.Y., Lin, L.I., Tang, J.L., Ko, B.S., Tsay, W., Chou, W.C., Yao, M., Wu, S.J., Tseng, M.H., and Tien, H.F. (2007). RUNX1 gene mutation in primary myelodysplastic syndrome--the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br. J. Haematol. 139, 405-414. https://doi.org/10.1111/j.1365-2141.2007.06811.x
  14. Christiansen, D.H., Andersen, M.K., and Pedersen-Bjergaard, J. (2004). Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 104, 1474-1481.
  15. Churpek, J.E., Lorenz, R., Nedumgottil, S., Onel, K., Olopade, O.I., Sorrell, A., Owen, C.J., Bertuch, A.A., and Godley, L.A. (2013). Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leuk. Lymphoma 54, 28-35. https://doi.org/10.3109/10428194.2012.701738
  16. Corm, S., Biggio, V., Roche-Lestienne, C., Lai, J.L., Yakoub-Agha, I., Philippe, N., Nicolini, F.E., Facon, T., and Preudhomme, C. (2005). Coexistence of AML1/RUNX1 and BCR-ABL point mutations in an imatinib-resistant form of CML. Leukemia 19, 1991-1992. https://doi.org/10.1038/sj.leu.2403931
  17. Deltcheva, E. and Nimmo, R. (2017). RUNX transcription factors at the interface of stem cells and cancer. Biochem. J. 474, 1755-1768. https://doi.org/10.1042/BCJ20160632
  18. Dicker, F., Haferlach, C., Sundermann, J., Wendland, N., Weiss, T., Kern, W., Haferlach, T., and Schnittger, S. (2010). Mutation analysis for RUNX1, MLLPTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 24, 1528-1532. https://doi.org/10.1038/leu.2010.124
  19. Ding, Y., Harada, Y., Imagawa, J., Kimura, A., and Harada, H. (2009). AML1/RUNX1 point mutation possibly promotes leukemic transformation in myeloproliferative neoplasms. Blood 114, 5201-5205. https://doi.org/10.1182/blood-2009-06-223982
  20. Gaidzik, V.I., Bullinger, L., Schlenk, R.F., Zimmermann, A.S., Rock, J., Paschka, P., Corbacioglu, A., Krauter, J., Schlegelberger, B., Ganser, A., et al. (2011). RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J. Clin. Oncol. 29, 1364-1372. https://doi.org/10.1200/JCO.2010.30.7926
  21. Gaidzik, V.I., Teleanu, V., Papaemmanuil, E., Weber, D., Paschka, P., Hahn, J., Wallrabenstein, T., Kolbinger, B., Kohne, C.H., Horst, H.A., et al. (2016). RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 30, 2282. https://doi.org/10.1038/leu.2016.207
  22. Godley, L.A. (2014). Inherited predisposition to acute myeloid leukemia. Semin. Hematol. 51, 306-321. https://doi.org/10.1053/j.seminhematol.2014.08.001
  23. Gohring, G., Karow, A., Steinemann, D., Wilkens, L., Lichter, P., Zeidler, C., Niemeyer, C., Welte, K., and Schlegelberger, B. (2007). Chromosomal aberrations in congenital bone marrow failure disorders--an early indicator for leukemogenesis? Ann. Hematol. 86, 733-739. https://doi.org/10.1007/s00277-007-0337-z
  24. Goyama, S., Huang, G., Kurokawa, M., and Mulloy, J.C. (2015). Posttranslational modifications of RUNX1 as potential anticancer targets. Oncogene 34, 3483-3492. https://doi.org/10.1038/onc.2014.305
  25. Grossmann, V., Haferlach, C., Weissmann, S., Roller, A., Schindela, S., Poetzinger, F., Stadler, K., Bellos, F., Kern, W., Haferlach, T., et al. (2013). The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer 52, 410-422. https://doi.org/10.1002/gcc.22039
  26. Grossmann, V., Kern, W., Harbich, S., Alpermann, T., Jeromin, S., Schnittger, S., Haferlach, C., Haferlach, T., and Kohlmann, A. (2011a). Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia. Haematologica 96, 1874-1877. https://doi.org/10.3324/haematol.2011.043919
  27. Grossmann, V., Kohlmann, A., Zenger, M., Schindela, S., Eder, C., Weissmann, S., Schnittger, S., Kern, W., Muller, M.C., Hochhaus, A., et al. (2011b). A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia 25, 557-560. https://doi.org/10.1038/leu.2010.298
  28. Grossmann, V., Schnittger, S., Kohlmann, A., Eder, C., Roller, A., Dicker, F., Schmid, C., Wendtner, C.M., Staib, P., Serve, H., et al. (2012). A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood 120, 2963-2972.
  29. Haferlach, T., Nagata, Y., Grossmann, V., Okuno, Y., Bacher, U., Nagae, G., Schnittger, S., Sanada, M., Kon, A., Alpermann, T., et al. (2014). Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241-247. https://doi.org/10.1038/leu.2013.336
  30. Haferlach, T., Stengel, A., Eckstein, S., Perglerova, K., Alpermann, T., Kern, W., Haferlach, C., and Meggendorfer, M. (2016). The new provisional WHO entity 'RUNX1 mutated AML' shows specific genetics but no prognostic influence of dysplasia. Leukemia 30, 2109-2112. https://doi.org/10.1038/leu.2016.150
  31. Harada, H. and Harada, Y. (2015). Recent advances in myelodysplastic syndromes: molecular pathogenesis and its implications for targeted therapies. Cancer Sci. 106, 329-336. https://doi.org/10.1111/cas.12614
  32. Harada, H., Harada, Y., Niimi, H., Kyo, T., Kimura, A., and Inaba, T. (2004). High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 103, 2316-2324. https://doi.org/10.1182/blood-2003-09-3074
  33. Harada, H., Harada, Y., Tanaka, H., Kimura, A., and Inaba, T. (2003). Implications of somatic mutations in the AML1 gene in radiationassociated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 101, 673-680. https://doi.org/10.1182/blood-2002-04-1010
  34. Hayashi, Y., Harada, Y., Huang, G., and Harada, H. (2017). Myeloid neoplasms with germ line RUNX1 mutation. Int. J. Hematol. 106, 183-188. https://doi.org/10.1007/s12185-017-2258-5
  35. Hayashi, Y., Yokota, A., Harada, H., and Huang, G. (2019). Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1alpha in cancer. Cancer Sci. 110, 1510-1517. https://doi.org/10.1111/cas.13990
  36. Hong, D., Messier, T.L., Tye, C.E., Dobson, J.R., Fritz, A.J., Sikora, K.R., Browne, G., Stein, J.L., Lian, J.B., and Stein, G.S. (2017). Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget 8, 17610-17627. https://doi.org/10.18632/oncotarget.15381
  37. Hou, H.A., Kuo, Y.Y., Liu, C.Y., Lee, M.C., Tang, J.L., Chen, C.Y., Chou, W.C., Huang, C.F., Lee, F.Y., Liu, M.C., et al. (2011). Distinct association between aberrant methylation of Wnt inhibitors and genetic alterations in acute myeloid leukaemia. Br. J. Cancer 105, 1927-1933. https://doi.org/10.1038/bjc.2011.471
  38. Ichikawa, M., Asai, T., Saito, T., Seo, S., Yamazaki, I., Yamagata, T., Mitani, K., Chiba, S., Ogawa, S., Kurokawa, M., et al. (2004). AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299-304. https://doi.org/10.1038/nm997
  39. Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95. https://doi.org/10.1038/nrc3877
  40. Klampfl, T., Harutyunyan, A., Berg, T., Gisslinger, B., Schalling, M., Bagienski, K., Olcaydu, D., Passamonti, F., Rumi, E., Pietra, D., et al. (2011). Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 118, 167-176.
  41. Kuo, M.C., Liang, D.C., Huang, C.F., Shih, Y.S., Wu, J.H., Lin, T.L., and Shih, L.Y. (2009). RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation. Leukemia 23, 1426-1431. https://doi.org/10.1038/leu.2009.48
  42. Kutler, D.I., Singh, B., Satagopan, J., Batish, S.D., Berwick, M., Giampietro, P.F., Hanenberg, H., and Auerbach, A.D. (2003). A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 101, 1249-1256. https://doi.org/10.1182/blood-2002-07-2170
  43. Latger-Cannard, V., Philippe, C., Bouquet, A., Baccini, V., Alessi, M.C., Ankri, A., Bauters, A., Bayart, S., Cornillet-Lefebvre, P., Daliphard, S., et al. (2016). Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J. Rare Dis. 11, 49. https://doi.org/10.1186/s13023-016-0432-0
  44. Mangan, J.K. and Speck, N.A. (2011). RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit. Rev. Oncog. 16, 77-91. https://doi.org/10.1615/CritRevOncog.v16.i1-2.80
  45. Mendler, J.H., Maharry, K., Radmacher, M.D., Mrozek, K., Becker, H., Metzeler, K.H., Schwind, S., Whitman, S.P., Khalife, J., Kohlschmidt, J., et al. (2012). RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J. Clin. Oncol. 30, 3109-3118. https://doi.org/10.1200/JCO.2011.40.6652
  46. Migas, A., Savva, N., Mishkova, O., and Aleinikova, O.V. (2011). AML1/RUNX1 gene point mutations in childhood myeloid malignancies. Pediatr. Blood Cancer 57, 583-587. https://doi.org/10.1002/pbc.22980
  47. Motoda, L., Osato, M., Yamashita, N., Jacob, B., Chen, L.Q., Yanagida, M., Ida, H., Wee, H.J., Sun, A.X., Taniuchi, I., et al. (2007). Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells (Dayton, Ohio) 25, 2976-2986. https://doi.org/10.1634/stemcells.2007-0061
  48. Niimi, H., Harada, H., Harada, Y., Ding, Y., Imagawa, J., Inaba, T., Kyo, T., and Kimura, A. (2006). Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations. Leukemia 20, 635-644. https://doi.org/10.1038/sj.leu.2404136
  49. Nishimoto, N., Imai, Y., Ueda, K., Nakagawa, M., Shinohara, A., Ichikawa, M., Nannya, Y., and Kurokawa, M. (2010). T cell acute lymphoblastic leukemia arising from familial platelet disorder. Int. J. Hematol. 92, 194-197. https://doi.org/10.1007/s12185-010-0612-y
  50. Osato, M. (2004). Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23, 4284-4296. https://doi.org/10.1038/sj.onc.1207779
  51. Osato, M., Asou, N., Abdalla, E., Hoshino, K., Yamasaki, H., Okubo, T., Suzushima, H., Takatsuki, K., Kanno, T., Shigesada, K., et al. (1999). Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 93, 1817-1824. https://doi.org/10.1182/blood.V93.6.1817.406k36_1817_1824
  52. Owen, C., Barnett, M., and Fitzgibbon, J. (2008a). Familial myelodysplasia and acute myeloid leukaemia--a review. Br. J. Haematol. 140, 123-132. https://doi.org/10.1111/j.1365-2141.2007.06909.x
  53. Owen, C.J., Toze, C.L., Koochin, A., Forrest, D.L., Smith, C.A., Stevens, J.M., Jackson, S.C., Poon, M.C., Sinclair, G.D., Leber, B., et al. (2008b). Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood 112, 4639-4645. https://doi.org/10.1182/blood.v112.11.4639.4639
  54. Pedersen-Bjergaard, J., Andersen, M.K., Andersen, M.T., and Christiansen, D.H. (2008). Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 22, 240-248. https://doi.org/10.1038/sj.leu.2405078
  55. Pedersen-Bjergaard, J., Christiansen, D.H., Desta, F., and Andersen, M.K. (2006). Alternative genetic pathways and cooperating genetic abnormalities in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 20, 1943-1949. https://doi.org/10.1038/sj.leu.2404381
  56. Peng, Z.G., Zhou, M.Y., Huang, Y., Qiu, J.H., Wang, L.S., Liao, S.H., Dong, S., and Chen, G.Q. (2008). Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1alpha. Oncogene 27, 839-847. https://doi.org/10.1038/sj.onc.1210676
  57. Preudhomme, C., Renneville, A., Bourdon, V., Philippe, N., Roche-Lestienne, C., Boissel, N., Dhedin, N., Andre, J.M., Cornillet-Lefebvre, P., Baruchel, A., et al. (2009). High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood 113, 5583-5587. https://doi.org/10.1182/blood-2008-07-168260
  58. Preudhomme, C., Warot-Loze, D., Roumier, C., Grardel-Duflos, N., Garand, R., Lai, J.L., Dastugue, N., Macintyre, E., Denis, C., Bauters, F., et al. (2000). High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 96, 2862-2869. https://doi.org/10.1182/blood.V96.8.2862
  59. Quentin, S., Cuccuini, W., Ceccaldi, R., Nibourel, O., Pondarre, C., Pages, M.P., Vasquez, N., Dubois d'Enghien, C., Larghero, J., Peffault de Latour, R., et al. (2011). Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 117, e161-e170. https://doi.org/10.1182/blood-2010-09-308726
  60. Roche-Lestienne, C., Deluche, L., Corm, S., Tigaud, I., Joha, S., Philippe, N., Geffroy, S., Lai, J.L., Nicolini, F.E., and Preudhomme, C. (2008). RUNX1 DNAbinding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL+leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood 111, 3735-3741. https://doi.org/10.1182/blood-2007-07-102533
  61. Ruggero, D. and Shimamura, A. (2014). Marrow failure: a window into ribosome biology. Blood 124, 2784-2792. https://doi.org/10.1182/blood-2014-04-526301
  62. Schlegelberger, B. and Heller, P.G. (2017). RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM). Semin. Hematol. 54, 75-80. https://doi.org/10.1053/j.seminhematol.2017.04.006
  63. Schmidt, M., Rinke, J., Schafer, V., Schnittger, S., Kohlmann, A., Obstfelder, E., Kunert, C., Ziermann, J., Winkelmann, N., Eigendorff, E., et al. (2014). Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 28, 2292-2299. https://doi.org/10.1038/leu.2014.272
  64. Schnittger, S., Dicker, F., Kern, W., Wendland, N., Sundermann, J., Alpermann, T., Haferlach, C., and Haferlach, T. (2011). RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 117, 2348-2357. https://doi.org/10.1182/blood-2009-11-255976
  65. Shiba, N., Hasegawa, D., Park, M.J., Murata, C., Sato-Otsubo, A., Ogawa, C., Manabe, A., Arakawa, H., Ogawa, S., and Hayashi, Y. (2012). CBL mutation in chronic myelomonocytic leukemia secondary to familial platelet disorder with propensity to develop acute myeloid leukemia (FPD/AML). Blood 119, 2612-2614. https://doi.org/10.1182/blood-2011-02-333435
  66. Shih, A.H., Chung, S.S., Dolezal, E.K., Zhang, S.J., Abdel-Wahab, O.I., Park, C.Y., Nimer, S.D., Levine, R.L., and Klimek, V.M. (2013). Mutational analysis of therapy-related myelodysplastic syndromes and acute myelogenous leukemia. Haematologica 98, 908-912. https://doi.org/10.3324/haematol.2012.076729
  67. Singhal, D., Wee, L.Y.A., Kutyna, M.M., Chhetri, R., Geoghegan, J., Schreiber, A.W., Feng, J., Wang, P.P., Babic, M., Parker, W.T., et al. (2019). The mutational burden of therapy-related myeloid neoplasms is similar to primary myelodysplastic syndrome but has a distinctive distribution. Leukemia 33, 2842-2853. https://doi.org/10.1038/s41375-019-0479-8
  68. Skokowa, J., Steinemann, D., Katsman-Kuipers, J.E., Zeidler, C., Klimenkova, O., Klimiankou, M., Unalan, M., Kandabarau, S., Makaryan, V., Beekman, R., et al. (2014). Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 123, 2229-2237. https://doi.org/10.1182/blood-2013-11-538025
  69. Song, W.J., Sullivan, M.G., Legare, R.D., Hutchings, S., Tan, X., Kufrin, D., Ratajczak, J., Resende, I.C., Haworth, C., Hock, R., et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166-175. https://doi.org/10.1038/13793
  70. Sood, R., Kamikubo, Y., and Liu, P. (2017). Role of RUNX1 in hematological malignancies. Blood 129, 2070-2082. https://doi.org/10.1182/blood-2016-10-687830
  71. Steensma, D.P., Gibbons, R.J., Mesa, R.A., Tefferi, A., and Higgs, D.R. (2005). Somatic point mutations in RUNX1/CBFA2/AML1 are common in highrisk myelodysplastic syndrome, but not in myelofibrosis with myeloid metaplasia. Eur. J. Haematol. 74, 47-53. https://doi.org/10.1111/j.1600-0609.2004.00363.x
  72. Stengel, A., Kern, W., Meggendorfer, M., Haferlach, T., and Haferlach, C. (2019). RUNX1 mutations in MDS, s-AML, and de novo AML: differences in accompanying genetic alterations and outcome. Leuk. Lymphoma 60, 1334-1336. https://doi.org/10.1080/10428194.2018.1522439
  73. Stengel, A., Kern, W., Meggendorfer, M., Nadarajah, N., Perglerova, K., Haferlach, T., and Haferlach, C. (2018). Number of RUNX1 mutations, wildtype allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML. Leukemia 32, 295-302. https://doi.org/10.1038/leu.2017.239
  74. Strati, P., Tang, G., Duose, D.Y., Mallampati, S., Luthra, R., Patel, K.P., Hussaini, M., Mirza, A.S., Komrokji, R.S., Oh, S., et al. (2018). Myeloid/lymphoid neoplasms with FGFR1 rearrangement. Leuk. Lymphoma 59, 1672-1676. https://doi.org/10.1080/10428194.2017.1397663
  75. Tang, J.L., Hou, H.A., Chen, C.Y., Liu, C.Y., Chou, W.C., Tseng, M.H., Huang, C.F., Lee, F.Y., Liu, M.C., Yao, M., et al. (2009). AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 114, 5352-5361. https://doi.org/10.1182/blood-2009-05-223784
  76. Taniuchi, I., Osato, M., Egawa, T., Sunshine, M.J., Bae, S.C., Komori, T., Ito, Y., and Littman, D.R. (2002). Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621-633. https://doi.org/10.1016/S0092-8674(02)01111-X
  77. Thoennissen, N.H., Krug, U.O., Lee, D.H., Kawamata, N., Iwanski, G.B., Lasho, T., Weiss, T., Nowak, D., Koren-Michowitz, M., Kato, M., et al. (2010). Prevalence and prognostic impact of allelic imbalances associated with leukemic transformation of Philadelphia chromosome-negative myeloproliferative neoplasms. Blood 115, 2882-2890. https://doi.org/10.1182/blood-2009-07-235119
  78. Tsai, S.C., Shih, L.Y., Liang, S.T., Huang, Y.J., Kuo, M.C., Huang, C.F., Shih, Y.S., Lin, T.H., Chiu, M.C., and Liang, D.C. (2015). Biological activities of RUNX1 mutants predict secondary acute leukemia transformation from chronic myelomonocytic leukemia and myelodysplastic syndromes. Clin. Cancer Res. 21, 3541-3551. https://doi.org/10.1158/1078-0432.CCR-14-2203
  79. Vormittag-Nocito, E., Ni, H., Schmidt, M.L., and Lindgren, V. (2019). Thrombocytopenia and predisposition to acute myeloid leukemia due to mosaic ring 21 with loss of RUNX1: cytogenetic and molecular characterization. Mol. Syndromol. 9, 306-311. https://doi.org/10.1159/000494645
  80. Wu, D., Ozaki, T., Yoshihara, Y., Kubo, N., and Nakagawara, A. (2013). Runtrelated transcription factor 1 (RUNX1) stimulates tumor suppressor p53 protein in response to DNA damage through complex formation and acetylation. J. Biol. Chem. 288, 1353-1364. https://doi.org/10.1074/jbc.M112.402594
  81. Xu, F., Wu, L.Y., He, Q., Wu, D., Zhang, Z., Song, L.X., Zhao, Y.S., Su, J.Y., Zhou, L.Y., Guo, J., et al. (2017). Exploration of the role of gene mutations in myelodysplastic syndromes through a sequencing design involving a small number of target genes. Sci. Rep. 7, 43113. https://doi.org/10.1038/srep43113
  82. Yoshimi, A., Toya, T., Kawazu, M., Ueno, T., Tsukamoto, A., Iizuka, H., Nakagawa, M., Nannya, Y., Arai, S., Harada, H., et al. (2014). Recurrent CDC25C mutations drive malignant transformation in FPD/AML. Nat. Commun. 5, 4770. https://doi.org/10.1038/ncomms5770
  83. Zhang, J., Ding, L., Holmfeldt, L., Wu, G., Heatley, S.L., Payne-Turner, D., Easton, J., Chen, X., Wang, J., Rusch, M., et al. (2012). The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157-163. https://doi.org/10.1038/nature10725
  84. Zhao, L.J., Wang, Y.Y., Li, G., Ma, L.Y., Xiong, S.M., Weng, X.Q., Zhang, W.N., Wu, B., Chen, Z., and Chen, S.J. (2012). Functional features of RUNX1 mutants in acute transformation of chronic myeloid leukemia and their contribution to inducing murine full-blown leukemia. Blood 119, 2873-2882. https://doi.org/10.1182/blood-2011-08-370981
  85. Zharlyganova, D., Harada, H., Harada, Y., Shinkarev, S., Zhumadilov, Z., Zhunusova, A., Tchaizhunusova, N.J., Apsalikov, K.N., Kemaikin, V., Zhumadilov, K., et al. (2008). High frequency of AML1/RUNX1 point mutations in radiation-associated myelodysplastic syndrome around Semipalatinsk nuclear test site. J. Radiat. Res. 49, 549-555. https://doi.org/10.1269/jrr.08040

Cited by

  1. Targeting RUNX1 in acute myeloid leukemia: preclinical innovations and therapeutic implications vol.25, pp.4, 2021, https://doi.org/10.1080/14728222.2021.1915991
  2. Searching for germline mutations in the RUNX1 gene among Polish patients with acute myeloid leukemia vol.62, pp.7, 2021, https://doi.org/10.1080/10428194.2021.1881503
  3. Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia vol.14, pp.1, 2020, https://doi.org/10.1186/s13045-021-01051-z
  4. Decreased CD177pos neutrophils in myeloid neoplasms is associated with NPM1, RUNX1, TET2, and U2AF1 S34F mutations vol.112, 2022, https://doi.org/10.1016/j.leukres.2021.106752