DOI QR코드

DOI QR Code

RUNX1 Mutations in the Leukemic Progression of Severe Congenital Neutropenia

  • Olofsen, Patricia A. (Department of Hematology, Erasmus MC) ;
  • Touw, Ivo P. (Department of Hematology, Erasmus MC)
  • Received : 2020.01.07
  • Accepted : 2020.01.08
  • Published : 2020.02.29

Abstract

Somatic RUNX1 mutations are found in approximately 10% of patients with de novo acute myeloid leukemia (AML), but are more common in secondary forms of myelodysplastic syndrome (MDS) or AML. Particularly, this applies to MDS/AML developing from certain types of leukemia-prone inherited bone marrow failure syndromes. How these RUNX1 mutations contribute to the pathobiology of secondary MDS/AML is still unknown. This mini-review focusses on the role of RUNX1 mutations as the most common secondary leukemogenic hit in MDS/AML evolving from severe congenital neutropenia (SCN).

Keywords

References

  1. Antony-Debre, I., Manchev, V.T., Balayn, N., Bluteau, D., Tomowiak, C., Legrand, C., Langlois, T., Bawa, O., Tosca, L., Tachdjian, G., et al. (2015). Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood 125, 930-940. https://doi.org/10.1182/blood-2014-06-585513
  2. Beekman, R., Valkhof, M.G., Sanders, M.A., van Strien, P.M., Haanstra, J.R., Broeders, L., Geertsma-Kleinekoort, W.M., Veerman, A.J., Valk, P.J., Verhaak, R.G., et al. (2012). Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood 119, 5071-5077. https://doi.org/10.1182/blood-2012-01-406116
  3. Bellissimo, D.C. and Speck, N.A. (2017). RUNX1 mutations in inherited and sporadic leukemia. Front. Cell Dev. Biol. 5, 111. https://doi.org/10.3389/fcell.2017.00111
  4. Cai, X., Gaudet, J.J., Mangan, J.K., Chen, M.J., De Obaldia, M.E., Oo, Z., Ernst, P., and Speck, N.A. (2011). Runx1 loss minimally impacts long-term hematopoietic stem cells. PLoS One 6, e28430. https://doi.org/10.1371/journal.pone.0028430
  5. Chen, C.Y., Lin, L.I., Tang, J.L., Ko, B.S., Tsay, W., Chou, W.C., Yao, M., Wu, S.J., Tseng, M.H., and Tien, H.F. (2007). RUNX1 gene mutation in primary myelodysplastic syndrome--the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br. J. Haematol. 139, 405-414. https://doi.org/10.1111/j.1365-2141.2007.06811.x
  6. Chin, D.W., Watanabe-Okochi, N., Wang, C.Q., Tergaonkar, V., and Osato, M. (2015). Mouse models for core binding factor leukemia. Leukemia 29, 1970-1980. https://doi.org/10.1038/leu.2015.181
  7. Christiansen, D.H., Andersen, M.K., and Pedersen-Bjergaard, J. (2004). Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 104, 1474-1481.
  8. Connelly, J.P., Kwon, E.M., Gao, Y., Trivedi, N.S., Elkahloun, A.G., Horwitz, M.S., Cheng, L., and Liu, P.P. (2014). Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects. Blood 124, 1926-1930.
  9. Dale, D.C., Bonilla, M.A., Davis, M.W., Nakanishi, A.M., Hammond, W.P., Kurtzberg, J., Wang, W., Jakubowski, A., Winton, E., Lalezari, P., et al. (1993). A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 81, 2496-2502. https://doi.org/10.1182/blood.V81.10.2496.2496
  10. Gaidzik, V.I., Bullinger, L., Schlenk, R.F., Zimmermann, A.S., Rock, J., Paschka, P., Corbacioglu, A., Krauter, J., Schlegelberger, B., Ganser, A., et al. (2011). RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J. Clin. Oncol. 29, 1364-1372. https://doi.org/10.1200/JCO.2010.30.7926
  11. Germeshausen, M., Ballmaier, M., and Welte, K. (2007). Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood 109, 93-99. https://doi.org/10.1182/blood-2006-02-004275
  12. Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Nakagawa, M., Olsson, A., Wunderlich, M., Link, K.A., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J. Clin. Invest. 123, 3876-3888. https://doi.org/10.1172/JCI68557
  13. Harada, H., Harada, Y., Niimi, H., Kyo, T., Kimura, A., and Inaba, T. (2004). High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 103, 2316-2324. https://doi.org/10.1182/blood-2003-09-3074
  14. Harada, H., Harada, Y., Tanaka, H., Kimura, A., and Inaba, T. (2003). Implications of somatic mutations in the AML1 gene in radiationassociated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 101, 673-680. https://doi.org/10.1182/blood-2002-04-1010
  15. Harada, Y. and Harada, H. (2009). Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations. J. Cell. Physiol. 220, 16-20. https://doi.org/10.1002/jcp.21769
  16. Harada, Y., Inoue, D., Ding, Y., Imagawa, J., Doki, N., Matsui, H., Yahata, T., Matsushita, H., Ando, K., Sashida, G., et al. (2013). RUNX1/AML1 mutant collaborates with BMI1 overexpression in the development of human and murine myelodysplastic syndromes. Blood 121, 3434-3446. https://doi.org/10.1182/blood-2012-06-434423
  17. Hermans, M.H., Antonissen, C., Ward, A.C., Mayen, A.E., Ploemacher, R.E., and Touw, I.P. (1999). Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene. J. Exp. Med. 189, 683-692. https://doi.org/10.1084/jem.189.4.683
  18. Hermans, M.H., Ward, A.C., Antonissen, C., Karis, A., Lowenberg, B., and Touw, I.P. (1998). Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood 92, 32-39. https://doi.org/10.1182/blood.V92.1.32.413k42_32_39
  19. Hino, S., Kishida, S., Michiue, T., Fukui, A., Sakamoto, I., Takada, S., Asashima, M., and Kikuchi, A. (2001). Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol. Cell. Biol. 21, 330-342. https://doi.org/10.1128/MCB.21.1.330-342.2001
  20. Ko, M., An, J., Bandukwala, H.S., Chavez, L., Aijo, T., Pastor, W.A., Segal, M.F., Li, H., Koh, K.P., Lähdesmäki, H., et al. (2013). Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497, 122-126. https://doi.org/10.1038/nature12052
  21. Liu, F., Kunter, G., Krem, M.M., Eades, W.C., Cain, J.A., Tomasson, M.H., Hennighausen, L., and Link, D.C. (2008). Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J. Clin. Invest. 118, 946-955. https://doi.org/10.1172/JCI32704
  22. Mangan, J.K. and Speck, N.A. (2011). RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit. Rev. Oncog. 16, 77-91. https://doi.org/10.1615/CritRevOncog.v16.i1-2.80
  23. Olofsen, P.A., Fatrai, S., van Strien, P.M.H., Obenauer, J.C., Hoogenboezem, R.M., Erpelinck-Verschueren, C.A.J., Roovers, O., Haferlach, T., Valk, P., Schneider, R.K., et al. (2018). A leukemic progression model of severe congenital neutropenia uncovers a novel mechanism of AML development involving elevated inflammatory responses, mutation of CXXC4 and decreased TET2 levels. Blood 132, 540. https://doi.org/10.1182/blood-2018-99-115914
  24. Olofsen, P.A., van Strien, P.M.H., Roovers, O., de Looper, H.W.J., Hoogenboezem, R.M., Bosch, D.A., Ghazvini, M., Bindels, E.M.J., de Pater, E.M., and Touw, I.P. (2019). PML plays a key role in severe congenital neutropenia with mutant elane causing neutrophil elastase protein misfolding. Blood 134, 213. https://doi.org/10.1182/blood-2019-122423
  25. Osato, M. (2004). Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23, 4284-4296. https://doi.org/10.1038/sj.onc.1207779
  26. Papapetrou, E.P. (2019). Modeling myeloid malignancies with patientderived iPSCs. Exp. Hematol. 71, 77-84. https://doi.org/10.1016/j.exphem.2018.11.006
  27. Preudhomme, C., Warot-Loze, D., Roumier, C., Grardel-Duflos, N., Garand, R., Lai, J.L., Dastugue, N., Macintyre, E., Denis, C., Bauters, F., et al. (2000). High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 96, 2862-2869. https://doi.org/10.1182/blood.V96.8.2862
  28. Quentin, S., Cuccuini, W., Ceccaldi, R., Nibourel, O., Pondarre, C., Pagès, M.P., Vasquez, N., Dubois d'Enghien, C., Larghero, J., Peffault, de Latour, R., et al. (2011). Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 117, e161-e170. https://doi.org/10.1182/blood-2010-09-308726
  29. Rosenberg, P.S., Alter, B.P., Bolyard, A.A., Bonilla, M.A., Boxer, L.A., Cham, B., Fier, C., Freedman, M., Kannourakis, G., Kinsey, S., et al. (2006). The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107, 4628-4635. https://doi.org/10.1182/blood-2005-11-4370
  30. Rosenberg, P.S., Zeidler, C., Bolyard, A.A., Alter, B.P., Bonilla, M.A., Boxer, L.A., Dror, Y., Kinsey, S., Link, D.C., Newburger, P.E., et al. (2010). Stable longterm risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br. J. Haematol. 150, 196-199. https://doi.org/10.1111/j.1365-2141.2010.08216.x
  31. Sakurai, M., Kunimoto, H., Watanabe, N., Fukuchi, Y., Yuasa, S., Yamazaki, S., Nishimura, T., Sadahira, K., Fukuda, K., Okano, H., et al. (2014). Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia 28, 2344-2354. https://doi.org/10.1038/leu.2014.136
  32. Schnittger, S., Dicker, F., Kern, W., Wendland, N., Sundermann, J., Alpermann, T., Haferlach, C., and Haferlach, T. (2011). RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 117, 2348-2357. https://doi.org/10.1182/blood-2009-11-255976
  33. Skokowa, J., Dale, D.C., Touw, I.P., Zeidler, C., and Welte, K. (2017). Severe congenital neutropenias. Nat. Rev. Dis. Primers 3, 17032. https://doi.org/10.1038/nrdp.2017.32
  34. Skokowa, J., Steinemann, D., Katsman-Kuipers, J.E., Zeidler, C., Klimenkova, O., Klimiankou, M., Unalan, M., Kandabarau, S., Makaryan, V., Beekman, R., et al. (2014). Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 123, 2229-2237. https://doi.org/10.1182/blood-2013-11-538025
  35. Song, W.J., Sullivan, M.G., Legare, R.D., Hutchings, S., Tan, X., Kufrin, D., Ratajczak, J., Resende, I.C., Haworth, C., Hock, R., et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166-175. https://doi.org/10.1038/13793
  36. Sood, R., Kamikubo, Y., and Liu, P. (2017). Role of RUNX1 in hematological malignancies. Blood 129, 2070-2082. https://doi.org/10.1182/blood-2016-10-687830
  37. Steensma, D.P., Gibbons, R.J., Mesa, R.A., Tefferi, A., and Higgs, DR. (2005). Somatic point mutations in RUNX1/CBFA2/AML1 are common in highrisk myelodysplastic syndrome, but not in myelofibrosis with myeloid metaplasia. Eur. J. Haematol. 74, 47-53. https://doi.org/10.1111/j.1600-0609.2004.00363.x
  38. Tang, J.L., Hou, H.A., Chen, C.Y., Liu, C.Y., Chou, W.C., Tseng, M.H., Huang, C.F., Lee, F.Y., Liu, M.C., Yao, M., et al. (2009). AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 114, 5352-5361. https://doi.org/10.1182/blood-2009-05-223784
  39. Touw, I.P. (2015). Game of clones: the genomic evolution of severe congenital neutropenia. Hematology Am. Soc. Hematol. Educ. Program 2015, 1-7. https://doi.org/10.1182/asheducation-2015.1.1
  40. Watanabe-Okochi, N., Kitaura, J., Ono, R., Harada, H., Harada, Y., Komeno, Y., Nakajima, H., Nosaka, T., Inaba, T., and Kitamura, T. (2008). AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 111, 4297-4308. https://doi.org/10.1182/blood-2007-01-068346
  41. Yzaguirre, A.D., de Bruijn, M.F., and Speck, N.A. (2017). The role of Runx1 in embryonic blood cell formation. Adv. Exp. Med. Biol. 962, 47-64. https://doi.org/10.1007/978-981-10-3233-2_4
  42. Zhu, Q.S., Xia, L., Mills, G.B., Lowell, C.A., Touw, I.P., and Corey, S.J. (2006). G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood 107, 1847-1856. https://doi.org/10.1182/blood-2005-04-1612