• 제목/요약/키워드: Geothermal source heat pump systems

검색결과 65건 처리시간 0.023초

한랭지(몽골) 지열 히트펌프 시스템의 난방 성능 분석 (Heating Performance of Geothermal Heat Pump System Applied in Cold Climate Region(Mongolia))

  • 손병후;최재호;민경천
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.31-38
    • /
    • 2015
  • Geothermal heat pump (GHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. These systems use the ground as a heat source in heating mode operation and a heat sink in cooling mode operation. The aim of this study is to evaluate the heating performance of the GHP system for a residential building ($420m^2$) in Ulaanbaatar, Mongolia. In order to demonstrate the feasibility of a sustainable performance of this system, we installed the water-to-water geothermal heat pump with ten vertical ground heat exchangers and measured operation parameters from October 19, 2013 to March 26, 2014. The results showed that the entering source temperature of brine from the ground heat exchangers was in a range of the design target temperature of $-10^{\circ}C$ for heating. For total values of the representative results, the ground heat exchangers extracted heat of 53.51 MWh from the ground. In addition, the GHP system supplied heat of 83.55 MWh to the building and consumed power of 30.27 MWh. Consequently, the average heating seasonal performance factor ($SPF_h$) of the overall system was evaluated to be 2.76 during the measurement period of the heating season.

현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구 (A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building)

  • 황석호;남유진
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.

GSHP 시스템의 국내적용성에 관한 연구(I) (A Study on the GSHP System for Domestic application(I))

  • 백성권;안형준;박영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.439-444
    • /
    • 2002
  • Geothermal or ground source heat pumps(GSHPs) are electrically powered systems that take advantage of the earth's relatively constant temperature to provide heating, cooling, and hot water for homes and commercial buildings. The buried pipe, or ground loop, is the most recent technical advance in heat pump technology. The idea to bury pipe in the ground to gather heat energy began in the 1940s. Only recently, however, have new heat pump designs and improved buried pipe materials been combined to make GHP systems the most efficient heating and cooling systems available. The aim of the study is application of the GSHP system in korea. Our environments for economy, politics and society are different from other countries. For a case, the progressive tax rate of home electricity is represented.

  • PDF

학교 건물용 지열 히트펌프 시스템 설계와 지중 순환수 온도 변화 분석 (Design of Ground-Coupled Heat Pump (GCHP) System and Analysis of Ground Source Temperature Variation for School Building)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.17-25
    • /
    • 2020
  • Ground-coupled heat pump (GCHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. Although some experimental and simulation works related to performance analysis of GCHP systems for commercial buildings have been done, relatively little has been reported on the performance evaluation of GCHP systems for school buildings. The purpose of this simulation study is to evaluate the performance of a hypothetical GCHP system for a school building in Seoul. We collected various data of building specifications and construction materials for the building and then modeled to calculate hourly building loads with SketchuUp and TRNSYS V17. In addition, we used GLD (Ground Loop Design) V2016, a GCHP system design and simulation software, to design the GCHP system for the building and to simulate temperature of circulating water in ground heat exchanger. The variation of entering source temperature (EST) into the system was calculated with different prediction time and then each result was compared. For 20 years of prediction time, EST for baseline design (Case A) based on the hourly simulation results were outranged from the design criteria.

지열히트펌프 시스템의 국내 적용현황 조사 및 분석 (Investigation and Analysis on the present state of Geothermal Source Heat Pump System Applied in Korea)

  • 최미영;고명진;김용식;박진철;이언구
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.267-272
    • /
    • 2009
  • This study aims to investigate and analyze the present state of ground source heat pump(GSHP) system applied in Korea. It is based on the statistic from the New and Renewable Energy Center in Korea and construction results of the professional companies registered to the center. The research items were installed area, installed year, building use, ground heat exchange type and heat exchanger type of the pump. According to the result of investigation, the using GSHP system have been increasing steadily as the space heating and cooling system in a building. The capacity of this system is also becoming lager based on technical and economical feasibility analysis about the system since GSHP system first introduced in 2000.

수주지열정 지열원 열펌프 시스템의 집단주거시설 적용을 위한 기반 기술 분석 (A Study on the SCW Ground Source Heat Pump System Technologies for Residential Cluster Homes)

  • 이광호;도성록;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.14-20
    • /
    • 2019
  • In this study, the technologies and regulations for distributing standing column well(SCW) ground source heat pump systems to the residential cluster homes were investigated. They have only been installed in the public or commercial building having different load pattern and site structure compared with the residential cluster homes. Some of SCWs for the residential cluster homes should be installed under the basement due to a lack of site area. There are pressure differences between the SCWs installed under ground surface and basement. It is needed to develop the technology or devices to prevent overflow caused by pressure difference among the SCWs. In addition, heat balance algorithm between SCWs should be adopted to maximize the system efficiency. A heat pump having heating, cooling, hot water, heating-hot water, and cooling-hot water modes should be developed for adopting an individual air-conditioning system to the residential cluster homes.

가정용 지열원 열펌프 시스템의 냉난방 성능 특성 연구 (An Experimental Study on the Cooling and Heating Performance of a Residential Ground Source Heat Pump System)

  • 공형진;강성재;윤경식;임효재
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.156-163
    • /
    • 2013
  • Ground Source Heat Pump (GSHP) systems utilize geothermal energy as a thermal source or sink, for heating, cooling and domestic hot water. It is well known that GSHP is environmentally friendly, and saves energy dramatically. For this reason, many investigative researches have been conducted on commercial and governmental buildings. However, studies on residential GSHP are few, because of the small capacity and cost. In this study, we experimented with the characteristic performance of heating, cooling and seasonal performance factor for a residential GSHP system, which consisted of two 180 m deep u-tube ground heat exchangers, a heat pump and measurement instruments. The installed capacity of the heat pump was 5RT, and the conditioning area was $62.23m^2$. From the experimental results, the cooling COP of the heat pump was 4.13, and the system COP was 3.51, while the CSPF was 3.32. On the other hand, the heating COP of the heat pump was 3.87, and the system COP was 3.39, while the HSPF was 3.39. Also, in-situ cooling COP and capacity were 93.7% and 96.4% compared with the EWT certification data, respectively, and that of heating were 98.3% and 95.7%, respectively.

지열 시스템의 도입이 지중온도환경에 미치는 영향에 대한 해석적 검토 (Numerical Analysis of the Effect of Ground Source Heat Pump Systems on the Underground Temperature)

  • 남유진
    • 설비공학논문집
    • /
    • 제25권8호
    • /
    • pp.427-431
    • /
    • 2013
  • Ground heat pump systems utilize the annually stable underground temperature to supply heat for space heating and cooling. The underground temperature affects not only the underground ecosystem, but also the performance of these systems. However, in spite of the widespread use of these systems, there have been few researches on the effect of the systems on underground temperature. In this research, case studies with numerical simulation have been conducted, in order to estimate the effect of ground heat pump systems on underground temperature. The simulation was coupled with the ground water-ground heat transfer model and the ground surface heat transfer model. In the result, it was found that the underground change depends on the heat transfer from the ground surface, the heat exchange rate, and the heat conductivity of soil.

지열원히트펌프를 활용한 도로융설시스템의 성능 평가 및 예측 (An Evaluation and Prediction of Performance of Road Snow-melting System Utilized by Ground Source Heat Pump)

  • 최덕인;황광일
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.138-145
    • /
    • 2012
  • Because of the climate changes and the development of building technologies, the cooling loads have been increased. Among the various renewable energies, geothermal energy is known as very useful and stable energy for heating and cooling of building. This study proposes a road snow-melting system of which heat is supplied from GSHP(Ground source heat pump) in viewpoint of the initial investment and annual running performance, which is also operating as a main facility of heating and cooling for common spaces. The results of this study is as followings. From the site measurement, it is found out that the road surface temperature above the geothermal heating pipe rose up to $5^{\circ}C$, which is the design temperature of road snow-melting, after 2 hours' operation and average COP(Coefficient of performance) was estimated as 3.5. The reliability of CFD has confirmed, because the temperature difference between results of CFD analysis and site measurement is only ${\pm}0.4^{\circ}C$ and the trend of temperature variation is quite similar. CFD analysis on the effect of pavement materials clearly show that more than 2 hours is needed for snow-melting, if the road is paved by ascon or concrete. But the road paved by brick is not reached to $5^{\circ}C$ at all. To evaluate the feasibility of snow-melting system operated by a geothermal circulation which has not GSHP, the surface temperature of concrete-paved road rise up to $0^{\circ}C$ after 2 hour and 40 minutes, and it does never increase to $5^{\circ}C$. And the roads paved by ascon and brick is maintained as below $0^{\circ}C$ after 12 hours geothermal circulation.

모니터링 및 시뮬레이션을 통한 SCW형 지열 시스템의 성능인자 분석에 관한 연구 (Study on the performance analysis of SCW geothermal system by simulation and monitoring)

  • 이상준;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권2호
    • /
    • pp.8-15
    • /
    • 2013
  • Recently, an interest in the use of renewable energy has been growing up due to the rise of raw material price, international oil price and depletion of fossil energy. Ground source heat pump system has a high efficiency by using the constant temperature of underground and various types of the systems have been installed and utilized in the building. there are few studies on the system performance factors in the SCW system. Furthermore, even though the performance of the system depends on the temperature of heat source, the research on their relationship is rare. In this research, in order to analyze the performance factor for the open-loop system the monitoring of the real building with the standing column well systems and the simulation with building model were conducted.