• Title/Summary/Keyword: Geothermal Well

Search Result 186, Processing Time 0.024 seconds

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Characteristics of Biodegradable Films and Their Effects on Soybean Growth

  • Ye Geon Kim;Hyo Jin Lee;Do Jin Lee;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.50-50
    • /
    • 2022
  • Recently, the use of mulching film has increased in soybean cultivation. Polyethylene (PE) films and biodegradable films (BF) have the advantages of improving soil moisture retention, geothermal maintenance, and CO2 maintenance as well providing weed control. Furthermore, BFs are a material that can compensate for the shortcomings of PE because it has the ability to decompose naturally by soil microorganisms, sunlight, and geothermal heat. Many researches have been carrying out studies regarding the development of BFs for these very reasons. This study was conducted better understand which films are optimal for soybean cultivation after evaluations of soybean growth and film characteristics of various BFs. BFs Farmsbio (Farm Hannong), Heulgro Film (Sejin Bio), Vonto Film (Eco-Hansung), two unnamed biodegradable films (Seojin Bio and Taesung), and a PE film were used in this study. For the control plots, no mulching was used. Experimental fields were fertilized according to conventional cultivation methods, tilled, and then covered with either BFs or PE films. After 1 week, soybean (cv. Daechan) seeds were seeded. Germination rate and plant height were measured at weekly intervals after seeding. In addition, pH, EC, and decomposition and light transmittance levels of films were measured during the experimental period. Daily average temperatures and relative humidity in soils was measured during the experimental period. There was no significant difference in germination rates and plant height in both crops grown with BFs and PE films, but crops grown in the control plot had significantly lower germination rates and growth. Soil pH was not significantly different regardless of treatments (BF, PE, and non-mulching) at 14, 28, and 42 days after seeding. In general, the EC contents in the control plots was lower than in crops grown using BFs and PE films. With the exception of some BFs, light transmittance and decomposition levels of films did not, in general, increase up to 70 days after soybean seeding. Since this study is ongoing, we are continually investigating these parameters. The average daily moisture in soil was higher in crops grown with BFs and PE films than in the control plot. However, the daily average soil temperature was not consistent regardless of treatments. Therefore, the BFs used in this study can be used without negative impacts on soybean growth.

  • PDF

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

An Analysis of the Relationships between Quantity and Drawdown at the Onyang Hot Spring Area (온양온천지구에서의 양수량-수위강하 관계 해석)

  • Jeong, Ji-Gon;Lee, Chol-Woo
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.177-185
    • /
    • 2007
  • Most of hot springs don't spring out naturally but are pumped by submersible pumps in Korea. When pumped piezometric head in a well is dropped with proportion to quantity. This research investigates relationships between quantity and drawdown at the Onyang hot spring area. There are 38 wells at this area and the depths of wells range from 124 m to 303 m. Piezometric heads of 4 wells were observed for about 10 months. Fluctuation patterns of piezometric heads seem to be a sine curve with a you period by a high demand and a slack season. Drawdowns of fluctuations were about 98-139 m depth to water table when wells were pumped at $2,300-4,800m^3/day$. A equation was made through analyzing quantity and drawdown.

A Technical Review of Hydromechanical Properties of Jointed Rock Mass accompanied by Fluid Injection (유체 주입을 동반한 절리 암반의 수리-역학 특성 평가에 대한 고찰)

  • Kim, Hyung-Mok;Guglielmi, Yves;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.12-29
    • /
    • 2019
  • Permeability and its change due to a fluid injection in jointed rock mass is an important factor to be well identified for a safe and successful implementation of Carbon Capture and Sequestration (CCS), Enhanced Geothermal System (EGS) and Enhanced Oil Recovery (EOR) projects which may accompany injection-induced hydromechanical deformation of the rock mass. In this technical report, we first reviewed important issues in evaluating initial permeability using borehole hydraulic tests and numierical approaches for understanding coupled hydromechanical properties of rock mass. Recent SIMFIP testing device to measure these hydromechanical properties directly through in-situ borehole experiments was also reviewed. The technical significance and usefulness of the device for further applications was discussed as well.

Geophysical well logs in basaltic area, Jeju Island (제주 현무암 지역의 용암분출에 따른 물리검층 반응의 특성 고찰)

  • Hwang Seho;Shim Jehyun;Park Inhwa;Choi Sun Young;Park Ki Hwa;Koh Gi Won
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.55-71
    • /
    • 2005
  • Jeju Island is mainly composed of basaltic lava flows and subordinate amounts of volcaniclastic sedimentary rocks. Jeju Province operates the monitoring wells for seawater intrusion problems around Jeju Island to evaluate of groundwater resources in coastal area. Various surveys and monitoring have been performed in boreholes, and also conventional geophysical well loggings conducted to identify basalt sequences and assess seawater intrusion problems. Various conventional geophysical well logs, including radioactive logs, electrical log, caliper log, and temperature and conductivity log and heat-pulse flowmeter log were obtained in 29 boreholes. The results of geophysical well loggings for saturated rocks are interesting and consistent. Natural gamma logs are useful in basalt sequences to sedimentary interbeds, unconsolidated U formation, and seoguipo formation with higher natural gamma log regardless of saturated or unsaturated basalts. Neutron logs are very effective to discriminate among individual lava flows, flow breaks, and sedimentary interbeds in saturated formation. In hyalocastite, porosity is high and resistivity is low, and we think that hyalocastite is a major pathway of fluid flow. In trachybasalt, porosity has a wide range and resistivity is high. In sedimentary interbeds, unconsolidated U formation and seoguipo formation, porosity is high and resistivity is low. The temperature logs in eastern area in Jeju are useful to interpret the hydrogeological unit and evaluate seawater intrusion in Suan area.

  • PDF

An Application of Minimum Support Stabilizer as a Model Constraint in Magnetotelluric 2D Inversion (최소모델영역 연산자를 모델제한조건으로 적용한 2차원 MT 역산)

  • Lee, Seong-Kon
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.834-844
    • /
    • 2009
  • Two-dimensional magnetotelluric (MT) inversion algorithm using minimum support (MS) stabilizer functional was implemented in this study to enhance the contrast of inverted images. For this implementation, this study derived a formula in discrete form for creeping model updates in the least-squares linearized inversion. A spatially varying regularization parameter determination algorithm, which is known as ACB (Active Constraint Balancing), was also adopted to stabilize the inversion process when using MS stabilizer as a model constraint. Inversion experiments for a simple isolated body model show well the feature of MS stabilizer in concentrating the anomalous body compared with the second-order derivative model constraint. This study also compared MS stabilizer and the second-order derivative model constraints for a model having multiple anomalous bodies to show the applicability of the algorithm into field data.

An Influence of Groundwater Flow on Performance of Closed Borehole Heat Exchangers (Part-2) (지하수류가 밀폐형 천공 지중 열교환기 성능에 미치는 영향(2))

  • Hahn, Jeongsang;Kiem, Youngseek;Lee, Juhyun;Lee, Byoungho;Hahn, Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.114-127
    • /
    • 2016
  • An increase of groundwater flux in BHE system creates that ground temperature (locT) becomes lower in summer and higher in winter time. In other words, it improves significantly the performance of BHE system. The size of thermal plume made up by advection driven-flow under the balanced energy load is relatively small in contrast to the unbalanced energy load where groundwater flow causes considerable change in the size of thermal plume as well ground temperature. The ground temperatures of the up gradient and down gradient BHEs under conduction only heat transport are same due to no groundwater flow. But a significant difference of the ground temperature is observed between the down gradient and up gradient BHE as a result of groundwater flow-driven thermal interference took placed in BHE field. As many BHEs are designed under the obscure assumption of negligible groundwater flow, failure to account for advection can cause inefficiencies in system design and operation. Therefore including groundwater flow in the design procedure is considered to be essential for thermal and economic sustain ability of the BHE system.

Sizing of Vertical Borehole Heat Exchangers using TRNOPT (TRNOPT를 이용한 수직 지중열교환기 길이 산정 방법에 관한 연구)

  • Park, Seung-Hoon;Lee, Hyun-Soo;Jang, Young-Sung;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.402-407
    • /
    • 2016
  • Ground-coupled heat pump systems have been widely used, as they are regarded as a renewable energy source and ensure a high annual efficiency. Among the system components, borehole heat exchangers (BHE) play an important role in decreasing the entering water temperature (EWT) to heat pumps in the cooling season, and consequently improve the COP. The optimal sizing of the BHEs is crucial for a successful project. Other than the existing sizing methods, a simulation-based design tool is more applicable for modern complex geothermal systems, and it may also be useful since design and engineering works operate on the same platform. A simulation-based sizing method is proposed in this study using the well-known Duct STorage (DST) model in Trnsys. TRNOPT, the Trnsys optimization tool, is used to search for an optimal value of the length of BHEs under given ground loads and ground properties. The result shows that a maximum EWT of BHEs during a design period (10 years) successfully approaches the design EWT while providing an optimal BHE length. Compared to the existing design tool, very similar lengths are calculated by both methods with a small error of 1.07%.

Time Series Analysis of the Effect of Ground-source Heat Pumps on Groundwater Characteristics (시계열 분석을 이용한 지열히트펌프 가동에 따른 지하수특성변화 해석)

  • Mok, Jong-Gu;Lim, Hong-Gyun;Jang, Bum-Ju;Park, Yu-Chul;Lee, Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.35-43
    • /
    • 2011
  • Time series analysis was applied to groundwater level, water temperature, and electrical conductivity data obtained from monitoring wells around ground-source heat pumps at Sangji University of Wonju (standing column well type) and at Jungwon University of Goesan (closed loop type), from 21 May to 12 October 2010. We found large temporal variations in the characteristics of groundwater at Wonju, but only minor variations at Goesan. These results may improve our understanding of the effects of ground-source heat pumps on the characteristics of surrounding groundwater, according to the installation method for the pumps.