An Analysis of the Relationships between Quantity and Drawdown at the Onyang Hot Spring Area

온양온천지구에서의 양수량-수위강하 관계 해석

  • Jeong, Ji-Gon (Dept. of Geology and Earth Environmental Science, Chungnam National University) ;
  • Lee, Chol-Woo (Geothermal Resources Group, Korea Institute of Geoscience and Mineral Resources)
  • 정지곤 (충남대학교 지구환경과학부) ;
  • 이철우 (한국지질자원연구원 지열자원연구실)
  • Published : 2007.06.30

Abstract

Most of hot springs don't spring out naturally but are pumped by submersible pumps in Korea. When pumped piezometric head in a well is dropped with proportion to quantity. This research investigates relationships between quantity and drawdown at the Onyang hot spring area. There are 38 wells at this area and the depths of wells range from 124 m to 303 m. Piezometric heads of 4 wells were observed for about 10 months. Fluctuation patterns of piezometric heads seem to be a sine curve with a you period by a high demand and a slack season. Drawdowns of fluctuations were about 98-139 m depth to water table when wells were pumped at $2,300-4,800m^3/day$. A equation was made through analyzing quantity and drawdown.

우리나라 대부분의 온천은 자연용출된 온천수를 사용하는 것이 아니라 시추공 내에서 수중펌프로 양수하여 사용하고 있다. 따라서 양수량에 따라 피압수두가 하강되어 있으며, 이 논문에서는 온양온천지구를 대상으로 양수량과 수위강하의 관계를 해석하고자 하였다. 온양온천지구 내에는 38개 공이 시추되어 있으며, 그 심도는 약 124-303 m이다. 이들 중 4개 관측공을 이용하여 피압수두를 관측하였으며, 관측 간격은 매 1-10분 간격으로 약 10개월간 관측하였다. 피압수두의 변화 양상은 성수기와 비수기에 따라 1년 주기로 사인곡선(sine curve)을 보이고 있으며, 그 값은 지표로부터 약 98-139m 정도이다. 이때 양수량은 $2,300-4,800m^3/day$로 앙수량의 변화에 따라 수위강하가 변하고 있다. 따라서 각 수위강하에 대한 양수량의 관계를 해석하여 관계식을 도출하였다.

Keywords

References

  1. 문상호, 이철우, 김형찬, 염병우, 기원서, 이대하, 김용제, 김석중, 성기성, 이봉주, 최순학, 1999, 온양온천지구 온천수 자원조사 보고서, 한국지질자원연구원, 99-3, No. 266, p. 242
  2. 이철우, 이대하, 정지곤, 김구영, 김용제, 2002, 양수시험시 방사상흐름을 보이는 균열암반 대수층에서의 우물 손실, 한국지하수토양환경학회지, Vol. 7, No. 4, pp. 17-23
  3. Bredehoeft, J. D., 1967, Response of well-aquifer systems to earth tides: J. Geophys. Res., v. 72, p. 3075- 3087 https://doi.org/10.1029/JZ072i012p03075
  4. Jacob, C. E., 1939, Fluctuations in artesian pressure produced by passing railroad trains as shown in a well on Long Island, New York: Amer. Geophys. Union, v. 20, p. 666-674 https://doi.org/10.1029/TR020i004p00666
  5. Jacob, C. E., 1940, On the flow of water in an elastic artesian aquifer: Trans. Amer. Geophys. Union, v. 22, p. 574-586
  6. Jacob, C. E., 1950, Flow of groundwater. Engineering Hydraulics, ed. H. Rouse: New York, John Wiley, p. 321-386
  7. Meinzer, O. E., 1928, Compressibility and elasticity of artesian aquifer: Econ. Geol., v. 23, p. 263-291 https://doi.org/10.2113/gsecongeo.23.3.263
  8. Parker, G. G., and Springfield, V. T., 1950, Effects of earthquakes, rains, tides, winds and atmospheric pressure changes on on the water in geologic formations of southern Florida. Econ. Geol., v. 45, p. 441-460 https://doi.org/10.2113/gsecongeo.45.5.441
  9. Robinson, T. W., 1939, Earth tides shown by fluctuations of water levels in wells in New Mexico and Iowa: Trans. Amer. Geophys. Union, v. 20, p. 656-666 https://doi.org/10.1029/TR020i004p00656
  10. Rorabough, M. I., 1953, Graphical and theoretical analysis of step-drawdown test of artesian well, Proceedings separate No. 362, ASCE, 79, pp. 1-23
  11. Theis, C. V., 1935, The relation between the lowering of the piezometric surface and rate and duration of discharge of a well using groundwater storage. Trans. Amer. Geophys. Union, v. 2, p. 519-524
  12. Van Der Kamp and Gale, J. E., 1983, Theory of earth tide and barometric effects in porous formations with compressible grains. Water Resources Res., v. 19, p. 538-544 https://doi.org/10.1029/WR019i002p00538
  13. Van Der Kamp, 1972, Tidal fluctuations in a confined aquifer extending under the sea: Ottawa, Env. Canada reprint 242, p. 101-106