• Title/Summary/Keyword: Geothermal Heat Pump

Search Result 344, Processing Time 0.026 seconds

A Study on the Physical Characteristics of Grout Material for Backfilling Ground Heat Exchanger (지중 열교환기용 뒤채움재의 물리적 특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Choi, Hyo-Pum;Woo, Sang-Baik
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • A geothermal heat pump system is a preferable alternative energy system in Korea because it uses the heat energy of the earth, which is environmentally friendly and inexhaustible. In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts, one marine clay from Boryung, and cement grouts adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The marine clay turns out to be unsuitable for backfilling the ground heat exchanger due to its insufficient swelling potential. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than that in the case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

The Outlet Temperature Prediction of In-Situ Thermal Response Test using CFD Analysis (CFD 해석을 이용한 현장 열응답 시험의 출구온도 예측)

  • Sim, Yong-Sub;Lee, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2016
  • The in-situ thermal response test for the design of a ground heat exchanger of geothermal heat pumps have difficulty in predicting the outlet temperature according to the variation of conditions due to the expense and time. This paper suggests a 3-D CFD analysis method to predict the heat transfer performance of vertical type ground heat exchanger, which is mostly used in national, and the outlet temperature and the slope of two in-situ thermal response tests were compared to test the proposed CFD reliability. The results of CFD analysis showed that the outlet temperature was predicted to within $0.5^{\circ}C$ of the actual value and the slope was predicted to within 1.6%. The reliability of the CFD analysis method was confirmed using this process, and the outlet temperature prediction of the two in-situ thermal response tests was obtained by changing ${\pm}20%$ of the flow rate and the effective thermal conductivity conditions, respectively. The results of CFD analysis showed that the outlet temperature of Case 1 was 28.0 (-20%) and $29.6^{\circ}C$ (+20%) for the flow rate variation and $29.6^{\circ}C$ (-20%) and $28.0^{\circ}C$ (+20%) for the effective thermal conductivity variation, and the outlet temperature of Case 2 was 28.4 (-20%) and $29.8^{\circ}C$ (+20%) for the flow rate variation and $29.7^{\circ}C$(-20%) and $28.4^{\circ}C$(+20%) for the effective thermal conductivity variation.

Analyzing Spatial and Temporal Variation of Ground Surface Temperature in Korea (국내 지면온도의 시공간적 변화 분석)

  • Koo Min-Ho;Song Yoon-Ho;Lee Jun-Hak
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.255-268
    • /
    • 2006
  • Recent 22-year (1981-2002) meteorological data of 58 Korea Meteorological Adminstration (KMA) station were analyzed to investigate spatial and temporal variation of surface air temperature (SAT) and ground surface temperature (GST) in Korea. Based on the KMA data, multiple linear regression (MLR) models, having two regression variables of latitude and altitude, were presented to predict mean surface air temperature (MSAT) and mean ground surface temperature (MGST). Both models showed a high accuracy of prediction with $R^2$ values of 0.92 and 0.94, respectively. The prediction of MGST is particularly important in the areas of geothermal energy utilization, since it is a critical parameter of input for designing the ground source heat pump system. Thus, due to a good performance of the MGST regression model, it is expected that the model can be a useful tool for preliminary evaluation of MGST in the area of interest with no reliable data. By a simple linear regression, temporal variation of SAT was analyzed to examine long-term increase of SAT due to the global warming and the urbanization effect. All of the KMA stations except one showed an increasing trend of SAT with a range between 0.005 and $0.088^{\circ}C/yr$ and a mean of $0.043^{\circ}C/yr$. In terms of meteorological factors controlling variation of GST, the effects of solar radiation, terrestrial radiation, precipitation, and snow cover were also discussed based on quantitative and qualitative analysis of the meteorological data.

Sizing of Vertical Borehole Heat Exchangers using TRNOPT (TRNOPT를 이용한 수직 지중열교환기 길이 산정 방법에 관한 연구)

  • Park, Seung-Hoon;Lee, Hyun-Soo;Jang, Young-Sung;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.402-407
    • /
    • 2016
  • Ground-coupled heat pump systems have been widely used, as they are regarded as a renewable energy source and ensure a high annual efficiency. Among the system components, borehole heat exchangers (BHE) play an important role in decreasing the entering water temperature (EWT) to heat pumps in the cooling season, and consequently improve the COP. The optimal sizing of the BHEs is crucial for a successful project. Other than the existing sizing methods, a simulation-based design tool is more applicable for modern complex geothermal systems, and it may also be useful since design and engineering works operate on the same platform. A simulation-based sizing method is proposed in this study using the well-known Duct STorage (DST) model in Trnsys. TRNOPT, the Trnsys optimization tool, is used to search for an optimal value of the length of BHEs under given ground loads and ground properties. The result shows that a maximum EWT of BHEs during a design period (10 years) successfully approaches the design EWT while providing an optimal BHE length. Compared to the existing design tool, very similar lengths are calculated by both methods with a small error of 1.07%.

Thermal Conductivity from an in-situ Thermal Response Test Compared with Soil and Rock Specimens under Groundwater-bearing Conditions (지하수 부존지역에서의 토질 및 암석 시료와 현장 열응답시험의 열전도도 비교)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.389-398
    • /
    • 2013
  • Studies of the thermal properties of various rock types obtained from several locations in Korea have revealed significant differences in thermal conductivities in the thermal response test (TRT), which has been applied to the design of a ground-source heat pump system. In the present study, we aimed to compare the thermal conductivities of the samples with those obtained by TRT. The thermal conductivities of soil and rock samples were 1.32W/m-K and 2.88 W/m-K, respectively. In comparison, the measured TRT value for thermal conductivity was 3.13W/m-K, which is 10% higher than that of the rock samples. We consider that this difference may be due to groundwater flow because abundant groundwater is present in the study area and has a hydraulic conductivity of 0.01. It is natural to consider that the object of TRT is to calculate the original thermal conductivity of the ground, following the line source theory. Therefore, we conclude that the TRT applied to a domestic standing column type well is not suitable for a line source theory. To solve these problems, values of thermal conductivity measured directly from samples should be used in the design of ground-source heat pump systems.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Evaluation on Heating Effects of Geothermal Heat Pump System in Farrowing House (지열 난방시스템을 이용한 분만돈사의 난방효과 분석)

  • Choi, H.C.;Park, Jae-Hong;Song, J.I.;Na, J.C.;Kim, M.J.;Bang, H.T.;Kang, H.G.;Park, S.B.;Chae, H.S.;Suh, O.S.;Yoo, Y.S.;Kim, T.W.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.205-215
    • /
    • 2010
  • Geothermal heat pump system (GHPS) is an energy-efficient technology that use the relatively constant and renewable energy stored in the earth to provide heating and cooling. With the aim of using GHPS as a heating source, it's possibilities of application in farrowing house were examined by measuring environmental assessment and sow's performance. A total of 96 sows were assigned to 2 pig housings (GHPS and conventional housing) with 48 for four weeks in winter season. During the experimental period, indoor maximum temperature in GHPS-housing was measured up to $26.7^{\circ}C$, average temperature could maintain $21.2^{\circ}C$. The mean value of dust levels and $CO_2$, $NH_3$ and $H_2S$ gas emissions were decreased in GHPS-housing compare with those of conventional housing. Litter size, birth weight, parity and weaning weight did not differ between housings. However, feed intake of sow in GHPS-housing was lower than that of conventional housing. In energy consumption for heating, electric power consumption increased in GHPS-housing than the conventional housing, a 2,250 kwh increase, whereas there is no fuel usage for heater in GHPS-housing. Amount of ground water circulated for heating in cold weather for earth heat exchanger was 8.4-12.9 ton per day. In conclusion, GHPS may have environmental benefits and effectiveness of heating in farrowing housing and affect the performance in sows.

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

Time Series Analysis of the Effect of Ground-source Heat Pumps on Groundwater Characteristics (시계열 분석을 이용한 지열히트펌프 가동에 따른 지하수특성변화 해석)

  • Mok, Jong-Gu;Lim, Hong-Gyun;Jang, Bum-Ju;Park, Yu-Chul;Lee, Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.35-43
    • /
    • 2011
  • Time series analysis was applied to groundwater level, water temperature, and electrical conductivity data obtained from monitoring wells around ground-source heat pumps at Sangji University of Wonju (standing column well type) and at Jungwon University of Goesan (closed loop type), from 21 May to 12 October 2010. We found large temporal variations in the characteristics of groundwater at Wonju, but only minor variations at Goesan. These results may improve our understanding of the effects of ground-source heat pumps on the characteristics of surrounding groundwater, according to the installation method for the pumps.