• Title/Summary/Keyword: Geotechnical parameter

Search Result 287, Processing Time 0.024 seconds

Parametric Study on Seismic Earth Pressure Through Dynamic Numerical Analyses of Basements (동적 수치해석을 통한 베이스먼트의 지진토압에 대한 매개변수 연구)

  • Park, Du-Hee;Lee, Choong-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.19-32
    • /
    • 2024
  • Dynamic earth pressure analysis is a key parameter in the seismic design of subterranean structures. However, existing solutions often lack a holistic approach, ignoring crucial elements like soil-structure interaction, the relative flexibility ratio (F) between the soil and a structure, the racking ratio (R) of a structure, and the structure aspect ratio (L/H). In this study, we conducted a thorough suite of dynamic numerical analyses on basements to understand how these factors influence seismic earth pressure. We found that structures with high aspect ratios and low flexibility were more susceptible to seismic pressure than those with lower aspect ratios and greater flexibility. Consequently, we recommend taking the aspect ratio and flexibility into account when estimating the seismic or dynamic earth pressure on basements and exercising caution when using traditional solutions proposed for retaining walls.

Analysis of Consolidation and Shear Characteristics for the Kwangyang Bay Clay (실내시험을 통한 광양만 점토의 압밀 및 전단특성분석)

  • 이영휘;김용준;김대길
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.151-160
    • /
    • 1999
  • A series of laboratory tests for the marine clay sampled under the sea of Kwangyang bay have been conducted. The main types of tests are the general index property tests, the oedometer tests and the triaxial compression tests in both undrained(CIU) and drained(CID) conditions. The clayey samples, classified as CL, CH with natural water content of 38.3~84.6% and liquidity index of 0.71~0.98, are in the normally consolidated state with O.C.R. of 1.0l~l.60. The undrained stress path from CIU tests can be normalized with isotropic consolidation pressure$(p_0)$ and equal shear strain contour is linear passing through the origin in the (q, p) plot. The undrained shear strain is found to be the only function of the stress ratio($\eta$) and linear with intercept in the ($\varepsilon/\eta,\eta$) plot. The built-up pore pressure normalized with pc is also linear with respect to $\eta$. and its slope is defined by ´C´ as a pore pressure parameter. Equations to predict the undrained stress path and the shear strain are proposed. It is proved that the proposed equations give better agreements to the measured values than the Cam-clay theories. The failure points of the stress path are located on the same C.S.L. in (q, p) plot during both CIU and CID tests, which justifies the concept of critical state theory.

  • PDF

Proposition Empirical Equations and Application of Artificial Neural Network to the Estimation of Compression Index (압축지수의 추정을 위한 인공신경망 적용과 경험식 제안)

  • 김병탁;김영수;배상근
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.25-36
    • /
    • 2001
  • The purpose of this paper is to discuss the effects of soil properties such as liquid limit, water content, etc. on the compression index and to propose the empirical equation of compression index far regional clay and to verify the application Back Propagation Neural Network(BPNN). The compression index values obtained from laboratory tests are in the range of 0.01 to 3.06 for clay soils sampled in eleven regions. As the compare with the results of laboratory test and the predicted compression index value from the proposed empirical equations, the results of empirical equations including single soil parameter have a possibility to be overestimated. Also, the results of empirical equations including multiple soil parameters closed to the measured value more than that of empirical equations including single soil parameter, but the standard error for measured value obtained larger than 0.05. For these reasons, the empirical equations including single or multiple soil parameters proposed base on the results of laboratory test and the determination coefficient is up to 0.89. The result of BPNN shows that correlation coefficient and standard error between test and neural network result is larger than 0.925 and smaller than 0.0196, which means high correlativity, respectively. Especially, the estimated result by neural network, using only three parameters such as natural water content, dry unit weight and in-situ void ratio among various factors is available to the estimation of compression index and the correlation coefficient is 0.974. This result verified the possibility that if BPNN use, the compression index can be predicted by the parameters, which obtained from simplex field test.

  • PDF

A New Methodology for the Assessment of Liquefaction Potential Based on the Dynamic Characteristics of Soils (II) : Verification (지반의 동적특성에 기초한 액상화 평가법 (II) : 타당성 검토)

  • 최재순;홍우석;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2002
  • In this study, a new methodology fur the assessment of liquefaction potential is proposed and characteristics of the proposed methodology are verified. The experimental parameter of this methodology, that is, the plastic shear strain trajectory, is compared with the dissipated energy. It is shown that this parameter can express the liquefaction behavior which is generated by excess pore water pressure. This methodology takes advantage of the shear strain time history determined from the site response analysis based on the real time history of earthquake. In this site response analysis, shock type and vibration type records of similar predominant frequency are inputted. The liquefaction safely factors based on the proposed methodology and Korean detailed assessment related to the classical method are calculated from the results of the site response analysis and laboratory dynamic tests. Through this study, it is found that the proposed methodology can not only simulate the liquefaction behavior of saturated soils hut also express the seismic characteristics reasonably : leading type, predominant frequency, maximum acceleration, duration time.

Evaluation of Skin Friction to Large Size Pneumatic Caissons (대형 뉴매틱케이슨의 주면마찰력 산정)

  • 홍원표;여규권;김태형
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.15-27
    • /
    • 2004
  • In this study, skin friction evaluation methods developed f3r deep foundation system were investigated and a method that can properly evaluate the skin friction of large size pneumatic caisson was proposed. Especially, based on Hong Won-Pyo's method, new technique (Kn parameter method) was suggested for estimation of the skin friction. The $\lambda$ method used widely to pile foundation was also investigated fur the applicability of estimation of the skin friction of large size pneumatic caisson. To do this, the data measured from the pneumatic caissons installed as a substructure of main tower in the suspension bridge part of Youngjong Grand Bridge were utilized. The data show that the skin friction is proportional to the rate of sinking, and the skin friction distribution with depth is similar to parabolic type rather straight line, which is a type generally observed in pile foundation. The skin frictions predicted by the Kn and $\lambda$ methods were plotted with the measured data for comparisons. It is cleary shown that the skin frictions estimated by the proposed Kn parameter method are well matched with the measured data. That is, for the large size pneumatic caisson having wide base, the new technique developed from Hong Won-Pyo's method is more suitable for estimation of the skin friction rather than the $\lambda$ method.

Experimental Behavior Characteristics of 2×2 Group Pile under Lateral Loads (수평하중을 받는 2×2 무리말뚝의 실험적 거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.5-16
    • /
    • 2018
  • In this study, the large scale laboratory model tests were executed to investigate the lateral resistance characteristics of $2{\times}2$ group pile under lateral loads according to the array method and installation angle of piles. The effect on the behavior of $2{\times}2$ group pile was also investigated through model tests varying the pile diameter and length, distance to pile top from the ground surface, center-to-center (CTC) length and surcharge etc. From these test results, it was found that the lateral resistance of $2{\times}2$ group pile of which piles were constructed slantly in both directions was greater than that of group pile of which piles were constructed vertically. And as a result of parameter tests on the lateral resistance of $2{\times}2$ group pile, it was found that the most important parameter was the pile length. As the embedment depth ratio (L/D) increased to 36.5 from 26.5, the lateral resistance increased 3~4 times or more. But the center-to-center (CTC) length, distance to pile top from the ground surface and surcharge did not affect much on the lateral resistance of group pile.

Prediction of Adfreeze Bond Strength Using Artificial Neural Network (인공신경망을 활용한 동착강도 예측)

  • Ko, Sung-Gyu;Shin, Hyu-Soung;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.71-81
    • /
    • 2011
  • Adfreeze bond strength is a primary design parameter, which determines bearing capacity of pile foundation in frozen ground. It is reported that adfreeze bond strength is influenced by various affecting factors like freezing temperature, confining pressure, characteristics of pile surface, soil type, etc. However, several limited researches have been performed to obtain adfreeze bond strength, for past studies considered only few affecting factors such as freezing temperature and type of pile structures. Therefore, there exists a limitation of estimating the design parameter of pile foundation with various factors in frozen ground. In this study, artificial neural network algorithm was involved to predict adfreeze bond strength with various affecting factors. From past five studies, 137 data for various experimental conditions were collected. It was divided by 100 training data and 37 testing data in random manner. Based on the analysis result, it was found that it is necessary to consider various affecting factors for the prediction of adfreeze bond strength and the prediction with artificial neural network algorithm provides enough reliability. In addition, the result of parametric study showed that temperature and pile type are primary affecting factors for adfreeze bond strength. And it was also shown that vertical stress influences only certain temperature zone, and various soil types and loading speeds might cause the change of evolution trend for adfreeze bond strength.

Partial Drainage Characteristics of Clayey Silt with Low Plasticity from the West Coast (서해안 저소성 점토질 실트 지반의 부분배수 특성)

  • Kim, Seok-Jo;Lee, Sang-Duk;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.17-27
    • /
    • 2016
  • Parial drainage characteristics of clayey silt with low plasticity from the west coast (Incheon and Hwaseong) was analyzed using CPTU based existing correlation equations and compulsory replacement method. Generally, the estimated $OCRs={\kappa}{\cdot}((q_t-{\sigma}_{vo})/{\sigma}^{\prime}_{vo})$ using Powell and Quartman(1988) were higher than those obtained by the oeodometer tests. These trends were noticeable for the layers containing a lot of silty and sand soils. The assessment of partial drainage conditions was performed through Schnaid et al. (2004)'s equation; it is based on plotting the normalized cone resistance, $Q_t$ versus the pore pressure parameter, $B_q$ in combination with the strength incremental ratio, $s_u/{\sigma}^{\prime}_{vo}$ to the CPTU data. It is evident that more than half of the data fall in the range where $B_q$ < 0.3, corresponding to the domain in which the partial drainage prevails when testing normally consolidated soils at a standard rate of penetration (2 cm/s). To estimate the replacement depth of clayey silt with low plasticity, back analysis was carried out to evaluate the internal friction angle based on where the design depths are equal to the checked depths using bearing capacity equation. The internal friction angels obtained from the back analysis tended to increase as the plasticity index decreases, which is ranged approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=7^{\circ}$.

Estimation of Settlement on the Crest of CFRD Subjected to Earthquake Loading Using Sensitivity Analysis (민감도분석을 통한 지진하중을 받는 CFRD 정상부 침하량 예측)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest settlement of CFRD (Concrete-Faced Rockfill Dam) subjected to earthquake loading was carried out. The purpose of this study is to indicate the most important input parameter from the results of sensitivity analysis, to show the quantitative variation of settlement at the crest of CFR type dam during earthquake with this input parameter, and to recommend the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading. The statistic characteristics of rockfill parameters which were obtained from large triaxial tests were evaluated. The total 108 dynamic numerical analyses (2 input earthquake, 2 magnitudes for each earthquake, 27 rockfill material property combinations) on CFRD were conducted. The global sensitivity analysis was carried out using the results of numerical analysis. From the sensitivity analysis, It was found that the crest settlement of the CFRD subjected to earthquake was absolutely affected by the shear modulus of rockfill material irrespective of the input earthquakes and the magnitude of input acceleration. On the contrary, it was found that the effect of cohesion and friction angle of rockfill was negligible. From the results of sensitivity analysis and numerical analysis, the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading was recommended on condition that the rockfill shear modulus and simple dam information was known.

Time-lapse Inversion of 2D Resistivity Monitoring Data (2차원 전기비저항 모니터링 자료의 시간경과 역산)

  • Kim, Ki-Ju;Cho, In-Ky;Jeoung, Jae-Hyeung
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.326-334
    • /
    • 2008
  • The resistivity method has been used to image the electrical properties of the subsurface. Especially, this method has become suitable for monitoring since data could be rapidly and automatically acquired. In this study, we developed a time-lapse inversion algorithm for the interpretation of resistivity monitoring data. The developed inversion algorithm imposes a big penalty on the model parameter with small change, while a minimal penalty on the model parameter with large change compared to the reference model. Through the numerical experiments, we can ensure that the time-lapse inversion result shows more accurate and focused image where model parameters have changed. Also, applying the timelapse inversion method to the leakage detection of an embankment dam, we can confirm that there are three major leakage zones, but they have not changed over time.