• Title/Summary/Keyword: Geotechnical investigation data

Search Result 171, Processing Time 0.028 seconds

Correlation Analysis between DCPT Value and SPT Value (동적콘관입시험값과 표준관입시험값의 상관성 분석)

  • Lee, Bongjik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.23-30
    • /
    • 2014
  • In-situ penetration tests have been widely used in geotechnical engineering for site investigation in support of analysis and design. Standard Penetration Test (SPT) and Dynamic Cone Penetration Test (DCPT) are typical dynamic sounding. DCPT was originally developed as an alternative for evaluating the properties of subgrade soils. The main advantages of DCPT are that it is fast, inexpensive, and it is particularly useful in delineating areas of weak soils overlying stronger strata and in quickly assessing the variability of the soil conditions. But lack of standardization is main reason that this test method has not been advanced more in recent years. In this study, it is clarified the correlation with the SPT blow count, N from DCPT data using big DCP eqipment. Regression analysis and correlationship analysis were conducted with the data from relationship between SPT and DCPT. The analysis results showed that the convert fact are in the range of 1.12~1.31 with variation with soil property.

Side Shear Resistance of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh-Sung;Kim, Byung-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.611-618
    • /
    • 2005
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into weathered rock was investigated. For that, a database of 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were socketed into weathered igneous/meta-igneous rock at four different sites. The static axial load tests were performed to examine the resistant behavior of the piles, and a comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. No correlation was found between the compressive strengths of intact rock and the side shear resistance of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. $E_m,\;E_{ur},\;_{plm}$, RMR, RQD, j) was found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.7 in most cases. Additionally, the applicability of existing methods for the side shear resistance of piles in rock was verified by comparison with the field test data. The existing empirical relations between the compressive strength of intact rock and the side shear resistance(Horvath (1982), Rowe & Armitage(1987) etc.) appeared to overestimated the side shear resistance of all piles tested in this research unless additional consideration on the effect of rock mass weathering or fracturing was applied. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.1, and RQD is below 50%.

  • PDF

A Review of Magnetic Exploration in Korea (한국의 육상 자력탐사)

  • Park, Yeong-Sue
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.403-416
    • /
    • 2006
  • Magnetic method is rapid, cheap and simple geophysical exploration technique, and has wide range of applications such as resources prospecting, geological structure investigation and even geotechnical and environmental problems. Especially, aeromagnetics gives fundamental and useful geoscientific data fnr not only assessment of potential resources, but also national land planning. Magnetic method, perhaps the oldest geophysical technique, was relatively early introduced into Korea. Documents during Japanese occupation says that magnetic method was used for exploring metallic ore deposits and hot spring, and that a geomagnetic observatory was operated. From mid 1950's, after Korean War, magnetic explorations for natural resources such as metallic ore, uranium, coal, and groundwater were intensively executed for industrialization. Apache aeromagnetic survey project during $1958{\sim}1959$ and its ground follow-up surveys are typical and important cases in those days. Magnetic survey techniques were rapidly advanced during 1970's and 1980's with improvements of instruments, growth of geophysical manpower, and availability of computers. The national aeromagnetic mapping project by KIGAM in 1981 showed the improved technical capability of those days. Decline of mining industry since mid 1980's moved the exploration objects from traditional resources to new ones such as groundwater and geothermal resources, and applications to investigation of geological structure were revived. Recently appeared applications such as natural hazard assessment, and engineering and environmental studies increased the magnetic method's utility in the realm of exploration.

Application of Multivariate Statistical Analysis Technique in Landfill Investigation (매립물 특성 조사를 위한 다변량 통계분석 기법의 응용)

  • Kwon, Byung-Doo;Kim, Cha-Soup
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.515-521
    • /
    • 1997
  • To investigate the nature of the waste materials in the Nanjido Landfill, we have conducted multivariate statistical analysis of geophysical data set comprised of magnetic, gravity, LandSat TM thermal band and surface depression measurement data. Because these data sets show different responses to the depth, we have transformed the observed total field magnetic data and gravity data to the residual reduced-to-pole(RTP) magnetic anomalies and the three dimensional density anomalies, respectively, and utilized the informations about the upper shallow part of the landfills only in the following process. For the statistical analysis at the points of depression measurement, the magnetic, density and LandSat data values at these points are determined by interpolation process. Since the multivarite statistical analysis technique utilizes a clustering algorithm for classification of data set and we have measured the dissimilarity between objects by using Euclidean distance, standardization was applied prior to distance calculation in order to eliminate any scaling effects due to different measurement unit of each data set. The hierarchial grouping technique was used to construct the dendrogram. The optimum number of statistical groups(clusters), which are classified on the basis of geophysical and geotechnical characteristics, appeared to be six on the resulting dendrogram. The result of this study suggests that the dimension and nature of the multicomponent waste landfills can be identified by application of the multivarite statistical analysis technique to integrated geophysical data sets.

  • PDF

Analytical study of circle tunnel Load considering Dilatancy Effect (Dilatancy 효과를 고려한 원형 터널 이완하중에 대한 해석적 연구)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.626-633
    • /
    • 2020
  • This study examined the behavior of the ground by comparing the methods using the results of the Terzaghi formula and the ground investigation data and method considering the dilatancy effect for a circular tunnel using the finite element method. In the case of the Terzaghi formula, the tunnel load can be overestimated and cause overdesign. The method using the results of the ground investigation data cannot be applied when a reasonable coefficient of earth pressure is not determined. This is because it behaves completely differently from the actual behavior, and unexpected problems can occur. In the case of the method considering the dilatancy effect, however, both the strength enhancement effect can be considered through the dilatancy angle and relative density. Therefore, the tunnel load was calculated most reasonably using the method considering dilatancy. Finite element analysis using the geotechnical survey results showed that the tensile stress acts at the top of the tunnel when the upper soil of the tunnel is shallow. On the other hand, additional verification is necessary, such as a comparison with the field measurement results. Through additional research, if normalized, the tunnel load can be calculated reasonably at the time of tunnel design, and safe and economical design is possible.

A study on Waviness of Large Discontinuity using 3D Laser Scanner (3D Laser Scanner를 이용한 대규모 불연속면의 굴곡도 측정 연구)

  • Kim, Yong;Lee, Su-Gon;Kim, Chee-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • The waviness of Large Discontinuity rock is the one of important elements that judges the stability of rock slope. When the waviness of large discontinuity is measured in the field, there are many limitations Therefore this research was carried out to measure waviness of large rock discontinuities using 3D laser scanner to supplement this problem. This research established one 3D model that actual X, Y and Z coordinates through the integrated data gained from one that calculates waviness of base lock using CAD program was compared and analyzed to that of disc-clinometer. As its results, the high reliability of results could be recognized as it belongs to mechanical tolerance $1{\sim}2^{\circ}$ and the results belong to the measured values of Mean DIP and Mean are all within $1^{\circ}$. So, the investigation method of waviness of large discontinuity rock face using 3D laser scanner was verified as more prompt, effective and reliable method than conventional direct site measuring method.

A proposal of marine geophysical exploration techniques for offshore plant installation (해양플랜트 설치를 위한 해양물리탐사 기법 제안)

  • Ha, Ji-Ho;Ko, Hwi-Kyung;Cho, Hyen-Suk;Chung, Woo-Keen;Ahn, Dang;Shin, Sung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.242-251
    • /
    • 2013
  • Recently, while global concern over offshore resources exploration and development is being increased rapidly, offshore plant industry is highlighted as an industry of high added value. Along with this global trend, domestic concern over offshore plant development is being increased as well. In the overseas case, a marine geotechnical survey guideline for confirming characteristics of seabed sediments is available at the time of installation of offshore plant but such guideline is not available in our country. In this study, survey techniques fit for domestic marine environment was applied according to overseas guideline at southern coastal area, Korea. Among the marine geophysical survey techniques being proposed abroad, magnetic survey and seabed photograph were excluded. However, highly reliable data analysis was enabled for marine geophysical survey, which includes in-situ coring investigation and laboratory soil test. In addition, continuous ocean current survey was included to find scour potential due to the current around the offshore plant. Although coring depth is not so deep, we predicted geological structure through the analysis of amplitude features of seismic data. Characteristics of seabed sediments cold be obtained regionally and directly through combined analysis of marine geophysical survey data and coring data.

Verification of Numerical Analysis Technique of Dynamic Response of Seabed Induced by the Interaction between Seabed and Wave (파랑-지반 상호작용에 의한 해저지반의 동적응답 수치해석법 검증)

  • Kang, Gi-Chun;Kim, Sung-Woung;Kim, Tae-Hyung;Kim, Do-Sam;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.5-14
    • /
    • 2015
  • Seabed may undergo large excess pore water pressure in the case of long duration of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. Thus, it is necessary to develop a numerical technique which can precisely evaluate the dynamic response of seabed due to wave action. In this study, a new numerical technique named mixed model (2D NIT & FLIP models) was proposed. The dynamic wave pressure and water flow velocity acting on the boundary between seabed and the wave field was estimated using 2D-NIT model. This result was used as input data in FLIP program for investigation of dynamic response of seabed. To secure the reliability of the mixed model, the numerical analysis results of the mixed model were compared with Yamamoto's solution and Chang's experiment results. The comparison results indicated that there were some differences between them, but the general trend of the effective stress increment and the excess pore water pressure along the depth of seabed was similar to each other. Thus, this study clearly supports the plausibility of the numerical analysis of the mixed model.

Ground Characterization of the Cheongju Granite Area Using the Geophysical Methods (물리탐사를 이용한 청주 화강암 지역의 지반특성 파악)

  • Kim Ji-Soo;Han Soo-Hyung;Seo Yong-Seok;Lee Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • This research is aimed at investigating the ground characterization of the Cheongju granite area using the geophysical methods. Test site was chosen from the building site in Chungbuk University, Chongju, Chungbuk province. Furthermore, geophysical methods are employed on the outcrops in the east to map the distribution of fault and intrusion and reveal the degree of weathering. The subsurface structure mapped from seismic re-fraction survey mainly consists of two units of weathered soil and rock. Threshold of the units were determined on the basis of seismic velocity of 800 m/s, supported from the standard classification table. From the results of standard penetrating test(SPT), these units are found to show medium-high and high density, respectively. Weathering soil is subdivided in unsaturated layer and saturated layer with thresholds of seismic velocity (500 m/s) and resistivity (200 ohm-m). In particular, unsaturated layer is again classified into dry and wet portions using the GPR section. The boundary between unsaturated and saturated weathering soils corresponds to the groundwater table at depth of approximately 5~6.2 m, which is well correlated with the one from drill-core data. However, bedrock is not delineated by geophysical methods. In the GPR section, fault and intrusion observed on the outcrop are revealed not to extend to the building site. With respect to weathering degree, the outcrop characterized by low resistivity and velocity corresponds to the grade of 'completely weathered' from the geotechnical investigations.

Investigation on the Key Parameters for the Strengthening Behavior of Biopolymer-based Soil Treatment (BPST) Technology (바이오폴리머-흙 처리(BPST) 기술의 강도 발현 거동에 대한 주요 영향인자 분석에 관한 연구)

  • Lee, Hae-Jin;Cho, Gye-Chum;Chang, Ilhan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.109-119
    • /
    • 2021
  • Global warming caused by greenhouse gas emissions has rapidly increased abnormal climate events and geotechnical engineering hazards in terms of their size and frequency accordingly. Biopolymer-based soil treatment (BPST) in geotechnical engineering has been implemented in recent years as an alternative to reducing carbon footprint. Furthermore, thermo-gelating biopolymers, including agar gum, gellan gum, and xanthan gum, are known to strengthen soils noticeably. However, an explicitly detailed evaluation of the correlation between the factors, that have a significant influence on the strengthening behavior of BPST, has not been explored yet. In this study, machine learning regression analysis was performed using the UCS (unconfined compressive strength) data for BPST tested in the laboratory to evaluate the factors influencing the strengthening behavior of gellan gum-treated soil mixtures. General linear regression, Ridge, and Lasso were used as linear regression methods; the key factors influencing the behavior of BPST were determined by RMSE (root mean squared error) and regression coefficient values. The results of the analysis showed that the concentration of biopolymer and the content of clay have the most significant influence on the strength of BPST.