• Title/Summary/Keyword: Geosynthetic reinforced structures

Search Result 26, Processing Time 0.021 seconds

Long-Term Behavior of Geogrid Reinforced Soil Abutment - A Numerical Investigation (지오그리드 보강토 교대의 장기거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik;Jeon, Han-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.65-76
    • /
    • 2011
  • This paper presents the results of a numerical investigation on the long-term behavior of geosynthetic reinforced soil abutment. The investigation was carried out aiming at identifying the governing mechanisms of the long-term deformation of geosynthetic-reinforced soil abutment subjected to sustained loads during service life. A numerical modeling strategy was first established using the Singh-Mitchell creep model and the power law model, respectively, for the backfill and the geosyntehtic reinforcement. A parametric study on the creep properties of the backfill and the geosynthetic reinforcement was then conducted. The results indicated that a geosynthetic reinforced soil structure backfilled with marginal soil may exhibit substantial long-term deformation due to the creep effects caused by both the backfill soil and the geosynthetic reinforcement, the magnitude of which depends largely on the creep properties. This paper highlights the importance of considering the creep effect on load supporting geosynthetic reinforced soil structures when the long-term serviceability requirement is of prime importance.

Behavior of Geosynthetic Reinforced Modular Block Walls under Sustained Loading (지속하중 재하시 보강토 옹벽의 거동특성 - 축소모형실험)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Byun, Jo-Seph;Kim, Young-Hoon;Han, Dae-Hui
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.121-130
    • /
    • 2006
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when used as part of permanent structures. In view of these concerns, time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained loads were investigated using reduced-scale model tests. The results indicated that a sustained load can yield appreciable magnitude of residual deformation, and that the magnitude of residual deformation depends on the loading characteristic as well as reinforcement stiffness.

  • PDF

Model to Determine Long-term Allowable Strength of Geosynthetics Reinforcements Considering Strain Compatibility (변형률 적합성을 고려한 토목섬유 보강재의 장기허용강도 결정 모델)

  • Jeon, Han-Yong;Yuu, Jung-Jo;Mok, Mun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1580-1587
    • /
    • 2005
  • To calculate the long-term allowable strength of geosynthetic reinforcement, replacement method was recommended. The isochronous creep curve by S. Turner was used to define the relation between creep strain and allowable strength. In isochronous curve at given time, one can read the allowable strength at allowable creep strain. The allowable strain gets from specification by directors or manufacturers according to the allowable displacement of reinforced structures. The allowable strength can be determined in relation to the allowable horizontal displacement each structures case by case. The effect of install damage on isochronous behaviors of geosynthetic reinforcement was little. In previous study, install damage increase the creep strain slightly. And the degradation was not identified. But it is supposed that degradation increase the creep strain. In conclusion, The recommended model to determine long-term allowable strength of geosynthetic reinforcements considering tensile deformation of reinforcement and soil is fit for proper, correct and economic design for reinforced earth walls.

  • PDF

Behavior of Geosynthetic Reinforced Modular Block Walls under Sustained Loading using Reduced-Scale Model Test (축소모형실험에 의한 지속하중하에서의 보강토 옹벽의 거동특성 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Byun, Joseph;Kim, Young-Hoon;Han, Dae-Hui
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when used as part of permanent structures. In view of these concerns, time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained loads were investigated using reduced-scale model tests. The results indicated that a sustained load can yield appreciable magnitude of residual deformation, and that the magnitude of residual deformation depends on the loading characteristic as well as reinforcement stiffness.

  • PDF

Strain localization and failure load predictions of geosynthetic reinforced soil structures

  • Alsaleh, Mustafa;Kitsabunnarat, Akadet;Helwany, Sam
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.235-261
    • /
    • 2009
  • This study illustrates the differences between the elasto-plastic cap model and Lade's model with Cosserat rotation through the analyses of two large-scale geosynthetic-reinforced soil (GRS) retaining wall tests that were brought to failure using a monotonically increasing surcharge pressure. The finite element analyses with Lade's model were able to reasonably simulate the large-scale plane strain laboratory tests. On average, the finite element analyses gave reasonably good agreement with the experimental results in terms of global performances and shear band occurrences. In contrast, the cap model was not able to simulate the development of shear banding in the tests. In both test simulations the cap model predicted failure loads that were substantially less than the measured ones.

3D Finite Element Analysis on Load Carrying Capacity of Geosynthetic-reinforced Bridge Abutment (보강토 교대 구조물의 하중지지 특성에 관한 3차원 유한요소해석)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.15-26
    • /
    • 2010
  • This paper presents the results of a three-dimensional finite element analysis on a geosynthetic-reinforced bridge abutment. Examples on the use of mechanically stabilized earth bridge abutment in north America are first presented. A three-dimensional finite element analysis on a 4.8 m high, 14 m wide geosynthetic-reinforced bridge abutment was performed to investigate the 3D behavior of the geosynthetic-reinforced bridge abutment and the load carrying capacity of the bridge abutment in the three-dimensional space. The results are then presented in a way that the three-dimensional behavior of the abutment can be identified in terms of wall displacements and reinforcement forces. It is shown that the wall facing displacements as well as the reinforcement forces in the abutment are smaller than those computed based on a plane strain approximation.

Numerical Study on the Behavior of Ground and Structure in Geosynthetic-Reinforced Soil (GRS) Integral Bridges

  • Sim, Youngjong;Jin, Kyu-Nam;Hong, Eun-Soo;Kim, Hansung;Park, Jun Kyung
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.97-108
    • /
    • 2021
  • In bridge abutment structures, lateral squeeze due to lateral stress of embankment placement and thermal movement of the bridge structure leads to failure of approach slabs, girders, and bridge bearings. Recently, GRS (Geosynthetic-Reinforced Soil) integral bridge has been proposed as a new countermeasure. The GRS integral bridge is a combining structure of a GRS retaining wall and an integral abutment bridge. In this study, numerical analyses which considered construction sequences and earthquake loading conditions are performed to compare the behaviors of conventional PSC (Pre-Stressed Concrete) girder bridge, traditional GRS integral bridge structure and GRS integral bridge with bracket structures (newly developed LH-type GRS integral bridge). The analysis results show that the GRS integral bridge with bracket structures is most stable compared with the others in an aspect of stress concentration and deformation on foundation ground including differential settlements between abutment and backfill. Furthermore, the GRS integral bridge with/without bracket structures was found to show the best performance in terms of seismic stability.

Sand-Nonwoven geotextile interfaces shear strength by direct shear and simple shear tests

  • Vieira, Castorina Silva;Lopes, Maria de Lurdes;Caldeira, Laura
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.601-618
    • /
    • 2015
  • Soil-reinforcement interaction mechanism is an important issue in the design of geosynthetic reinforced soil structures. This mechanism depends on the soil properties, reinforcement characteristics and interaction between these two elements (soil and reinforcement). In this work the shear strength of sand/geotextile interfaces were characterized through direct and simple shear tests. The direct shear tests were performed on a conventional direct shear device and on a large scale direct shear apparatus. Unreinforced sand and one layer reinforced sand specimens were characterized trough simple shear tests. The interfaces shear strength achieved with the large scale direct shear device were slightly larger than those obtained with the conventional direct shear apparatus. Notwithstanding the differences between the shear strength characterization through simple shear and direct shear tests, it was concluded that the shear strength of one layer reinforced sand is similar to the sand/geotextile interface direct shear strength.

Time-Dependent Deformation Characteristics of Geosynthetic-Reinforced Soil Using Plane Strain Compression Tests (평면변형압축시험을 이용한 보강토의 시간 의존적 변형 특성 연구)

  • Yoo Chung-Sik;Kim Sun-Bin;Lee Bong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.85-97
    • /
    • 2005
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exist concerns over long-term residual deformation when subjected to repeated and/or cyclic loads, especially when used as part of permanent structures. In view of these concerns, in this paper time-dependent deformation characteristics of geosynthetic reinforced soil under sustained and/or repeated loads were investigated using a series of plane strain compression tests on geogrid reinforced weathered granite soil specimens. The results indicate that sustained or repeated loads can yield appreciable magnitudes of residual deformations, and that the residual deformations are influenced not only by the loading characteristics but by the mechanical properties of geogrid. It is also found that the preloading technique can be effectively used in controlling residual deformations of reinforced soils subjected to sustained and/or repeated loads.