• Title/Summary/Keyword: Geosynchronous satellite

Search Result 61, Processing Time 0.024 seconds

Trend of Domestic and International Development of Multi-Purpose Satellites of Geosynchronous Orbit (정지궤도 복합위성 국내외 개발 동향)

  • Gong, Hyeon-Cheol;Song, Byung-Chul;Oh, Bum-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • Korea Aerospace Research Institute(KARI) is developing COMS (Communication, Ocean and Meteorological Satellite) which is scheduled to take off in June, 2009. COMS is the first geosynchronous satellite developed in Korea which is able to perform three missions 24 hours a day. The oceanic payload was transferred from France to Korea in November, 2008 and made it possible to integrate all three payload together. After the integration COMS is planned to be transferred to Guiana Space Center (on French territory) to be launched. In this paper the trend of domestic and international development of the multi-purpose geosynchronous satellite considering the COMS is the first operational geosynchronous multipurpose satellite in the world.

  • PDF

Characteristic So1ar Wind Dynamics Associated With Geosynchronous Relativistic Electron Events

  • Ki, Hui-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.41-41
    • /
    • 2004
  • We report the results on the investigation of the association of solar wind dynamics and the occurrence of geosynchronous relativistic electron events. This study analyzed E>2MeV electron fluxes measured by GOES 10 satellite and solar wind parameters by ACE satellite for April, 1999 to December, 2002. Most of the relativistic events during the time period are found to be accompanied by the prolonged period of quiet solar wind dynamics which is characterized as low solar wind pressure, weak interplanetary magnetic field, and fast fluctuations in IMF Bz. (omitted)

  • PDF

Operational Status of 20mN class Ion Engine Subsystem for ETS-VIII

  • Ozaki, Toshiyuki;Kasai, Yukikazu;Nakagawa, Takafumi;Kajiwara, Kenichi;Ikeda, Masafumi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.511-518
    • /
    • 2008
  • The Engineering Test Satellite VIII(ETS-VIII) of Japan Aerospace Exploration Agency(JAXA) uses a 20mN class xenon ion engine subsystem(IES) for North-South Station Keeping(NSSK). The IES was modified for a larger satellite with longer lifetime based on the former IES. ETS-VIII, a three-ton class geosynchronous satellite with 10 years bus lifetime, was launched 18 Dec. 2006 JST; it reached the planned orbit and all bus systems were checked out. The IES showed good results and is now under normal operation. The total accumulated operation time of the IES in orbit was about 2300 hours till $19^{th}$ Dec. 2007.

  • PDF

A Study on the Wheel Momentum Management Logic of a Geosynchronous Satellite (정지궤도위성의 휠모멘텀 관리 로직 연구)

  • Park, Yeong Ung;Nam, Mun Gyeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.85-94
    • /
    • 2003
  • A geosynchronous Satellite in general, has two momentum management logics to maintain its wheel momentum tin the stable region. The one is applied in order to control accumulative wheel momentum in the momentum dumping mode and the other is utilized in order to control attitude errors during the stationkeeping. In this paper, the momentum management logics are explained for dumping/sationkeeping mode and the logics are verified by simulation on the 3 attitude subsystem.

Development of VDS for Geosynchronous Satellite and Verification using PILS & HILS (정지궤도위성 실시간 동역학 시뮬레이터 개발 및 연동시험을 통한 검증)

  • Park, Yeong-Ung;Gu, Ja-Chun;Choe, Jae-Dong;Gu, Cheol-Hoe;Park, Bong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.103-109
    • /
    • 2006
  • In this paper, VDS(Vehicle Dynamics Simulator) and ACS(Attitude Control Simulator) are developed and are verified using PILS(Process In-the Loop Simulation) between VDS and ACS. VDS is including the AOCS(Attitude & Orbit Control Subsystem) hardware modeling of geosynchronous satellite and consists of modulation concept. ACS performs the attitude determination using sensor data and generates the attitude control commands. In order to transfer the data between VDS and PCDU(Power Control & Distribution Unit), data acquisition boards were mounted. VDS performance is verified using HILS(Hardware In-the Loop Simulation) between VDS and PCDU.

RESONANCE EFFECT ON THE GEOSYNCHRONOUS ORBIT DUE TO THE NON-ZONAL GEOPOTENTIAL (지구 비대칭 중력장이 정지위성에 미치는 효과)

  • 박종욱;문인상;최규홍;최용석
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.23-35
    • /
    • 1990
  • Resonance effect on the orbital elements of geosynchronous artificial satellite due to the non-zonal geopotential has been calculated. For the perturbation of a artificial satellite, perturbation effects due to the non-zonal geopotential is less than due to the $J_2$ or Luni-Solar perturbation, but non-zonal harmonics resonance exist. So, we calculate the perturbation of geosynchronous artificial satellite orbit due to the non-zonal harmonics resonance. The effect on the orbit eccentricity of non-zonal harmonics resonance is represented by a phase plane plot of ec. The effect on the orbit eccentricity of non-zonal harmonics resonance is represented by a phase plane plot of $e_c$ verse $e_s$. The evolution of mean longitude and semi-major axis are obtained.

  • PDF

Requirement analysis of a low budget dedicated monitoring telescope to support the Geosynchronous Earth Orbit region optical surveillance (지구 정지궤도 영역 상시관측 지원을 위한 저예산 전용 광학관측 시스템 요구사항 분석)

  • Jo, Jung Hyun;Park, Jang-Hyun;Cho, Sungki;Yim, Hong-Suh;Choi, Jin;Park, Maru
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.128-135
    • /
    • 2015
  • Currently we have an electro-optical space object monitoring system (OWL-Net) developed by the Korea Astronomy and Space Science Institute as the only ground-based on orbit space object tracking capability in Korea. This system can produce the ephemeris of domestic satellites and survey the geosynchronous orbit region. As the number of observation objects increases and the operation condition get worse, a low budget dedicated monitoring telescope capable of full time geosynchronous orbit region survey can support an effect operation of the OWL-Net. In this study, we analyze the requirements of a low-budget dedicated optical monitoring system for geosynchronous orbit region without the degradation of observation quality to increase the risk of corrupted ephemeris.

Statistical Analysis on the trapping boundary of outer radiation belt during geosynchronous electron flux dropout : THEMIS observation

  • Hwang, Jung-A;Lee, Dae-Young;Kim, Kyung-Chan;Choi, Eun-Jin;Shin, Dae-Kyu;Kim, Jin-Hee;Cho, Jung-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Geosynchronous electron flux dropouts are most likely due to fast drift loss of the particles to the magnetopause (or equivalently, the "magnetopause shadowing effect"). A possible effect related to the drift loss is the radial diffusion of PSD due to gradient of PSD set by the drift loss effect at an outer L region. This possibly implies that the drift loss can affect the flux levels even inside the trapping boundary. We recently investigated the details of such diffusion process by solving the diffusion equation with a set of initial and boundary conditions set by the drift loss. Motivated by the simulation work, we have examined observationally the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropouts. For this work, we have first identified a list of geosynchronous flux dropout events for 2007-2010 from GOES satellite electron measurements and solar wind pressures observed by ACE satellite. We have then used the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements to investigate the particle fluxes. The five THEMIS spacecraft sufficiently cover the inner magnetospheric regions near the equatorial plane and thus provide us with data of much higher spatial resolution. In this paper, we report the results of our investigations on the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropout events and discuss implications on the effects of the drift loss on the flux levels at inner L regions.

  • PDF

Optimization of a radiator for a MPFL system in a GEO satellite

  • Afshari, Behzad Mohasel;Abedi, Mohsen;Shahryari, Mehran
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.701-709
    • /
    • 2017
  • One of the components that used in the satellite thermal control subsystem is the Mechanically Pumped Fluid Loop (MPFL) system; this system mostly used in geosynchronous orbit (GEO) satellites, and can transfer heat from a hot point to a cold point using the fluid which circulated in a closed loop. Heat radiates to the deep space at the cold plate to cool down the fluid temperature. In this research, the radiative heatexchanger (RHX) for a MPFL system is optimized. The genetic algorithm has been used for minimizing the total mass and pressure drop by considering a constant transferred heat rate at the heat exchanger. The optimization has been done in two cases. In case I, two parameters are considered as a goal function, so optimization is performed using NSGA-II method. Results of optimization are shown in the pareto diagram. In case II, the diameter of pipe is considered constant, so the optimized value for distances of the parallel pipes is obtained by using the genetic algorithm, in which the system has the least total mass. Results show that in the RHX, by increasing the pipe diameter, pressure drop decreases and total mass increases. Also by considering a constant value for pipe diameter, an optimum distance between pipes and pipe length are obtained in which the system has a minimum mass.