• Title/Summary/Keyword: Geospatial Data Model

Search Result 310, Processing Time 0.023 seconds

Development of Java/VRML-based 3D GIS's Framework and Its Prototype Model (Java/VRML기반 3차원 GIS의 기본 구조와 프로토타입 모델 개발)

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.11-17
    • /
    • 1998
  • Recently, 3D GIS based on 3D geo-processing methodology and Internet environment are emerging issues in GIS fields. To design and implement 3D GIS, the strategic linkage of Java and VRML is first regarded: 3D feature format definition in the passion of conventional GIS including aspatial attributes, 3B feature indexing, 3D analytical operators such as selection, buffering, and Near, Metric operation such as distance measurement and statistical description, and 3D visualization. In 3D feature format definition, the following aspects are implemented: spatial information for 3D primitives extended from 2D primitives, multimedia data, object texture or color of VRML specification. DXF-format GIS layers with additional attributes are converted to 3D feature format and imported into this system. While, 3D analytical operators are realized in the form of 3D buffering with respect to user-defined point, line, polygon, and 3D objects, and 3D Near functions; furthermore, 'Lantern operator' is newly introduced in this 3D GIS. Because this system is implemented by Java applet, any client with Java-enable browser including VRML browser plug-in can utilize the new style of 3D GIS function in the virtual space. Conclusively, we present prototype of WWW-based 3D GIS, and this approach will be contribute to development of core modules on the stage of concept establishment and of real application model in future.

  • PDF

Process Development for Optimizing Sensor Placement Using 3D Information by LiDAR (LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정방법론 개발)

  • Yu, Han-Seo;Lee, Woo-Kyun;Choi, Sung-Ho;Kwak, Han-Bin;Kwak, Doo-Ahn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.3-12
    • /
    • 2010
  • In previous studies, the digital measurement systems and analysis algorithms were developed by using the related techniques, such as the aerial photograph detection and high resolution satellite image process. However, these studies were limited in 2-dimensional geo-processing. Therefore, it is necessary to apply the 3-dimensional spatial information and coordinate system for higher accuracy in recognizing and locating of geo-features. The objective of this study was to develop a stochastic algorithm for the optimal sensor placement using the 3-dimensional spatial analysis method. The 3-dimensional information of the LiDAR was applied in the sensor field algorithm based on 2- and/or 3-dimensional gridded points. This study was conducted with three case studies using the optimal sensor placement algorithms; the first case was based on 2-dimensional space without obstacles(2D-non obstacles), the second case was based on 2-dimensional space with obstacles(2D-obstacles), and lastly, the third case was based on 3-dimensional space with obstacles(3D-obstacles). Finally, this study suggested the methodology for the optimal sensor placement - especially, for ground-settled sensors - using the LiDAR data, and it showed the possibility of algorithm application in the information collection using sensors.

LiDAR Ground Classification Enhancement Based on Weighted Gradient Kernel (가중 경사 커널 기반 LiDAR 미추출 지형 분류 개선)

  • Lee, Ho-Young;An, Seung-Man;Kim, Sung-Su;Sung, Hyo-Hyun;Kim, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.

A Prospect on the Changes in Short-term Cold Hardiness in "Campbell Early" Grapevine under the Future Warmer Winter in South Korea (남한의 겨울기온 상승 예측에 따른 포도 "캠벨얼리" 품종의 단기 내동성 변화 전망)

  • Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Warming trends during winter seasons in East Asian regions are expected to accelerate in the future according to the climate projection by the Inter-governmental Panel on Climate Change (IPCC). Warmer winters may affect short-term cold hardiness of deciduous fruit trees, and yet phenological observations are scant compared to long-term climate records in the regions. Dormancy depth, which can be estimated by daily temperature, is expected to serve as a reasonable proxy for physiological tolerance of flowering buds to low temperature in winter. In order to delineate the geographical pattern of short-term cold hardiness in grapevines, a selected dormancy depth model was parameterized for "Campbell Early", the major cultivar in South Korea. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HDDTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations and a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and site elevation). To generate relevant datasets for climatological normal years in the future, we combined a 25km-resolution, 2011-2100 temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 scenario) with the 1971-2000 HD-DTM. The dormancy depth model was run with the gridded datasets to estimate geographical pattern of change in the cold-hardiness period (the number of days between endo- and forced dormancy release) across South Korea for the normal years (1971-2000, 2011-2040, 2041-2070, and 2071-2100). Results showed that the cold-hardiness zone with 60 days or longer cold-tolerant period would diminish from 58% of the total land area of South Korea in 1971-2000 to 40% in 2011-2040, 14% in 2041-2070, and less than 3% in 2071-2100. This method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Performance of Northern Exposure Index in Reducing Estimation Error for Daily Maximum Temperature over a Rugged Terrain (북향개방지수가 복잡지형의 일 최고기온 추정오차 저감에 미치는 영향)

  • Chung, U-Ran;Lee, Kwang-Hoe;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2007
  • The normalized difference in incident solar energy between a target surface and a level surface (overheating index, OHI) is useful in eliminating estimation error of site-specific maximum temperature in complex terrain. Due to the complexity in its calculation, however, an empirical proxy variable called northern exposure index (NEI) which combines slope and aspect has been used to estimate OHI based on empirical relationships between the two. An experiment with real-world landscape and temperature data was carried out to evaluate performance of the NEI - derived OHI (N-OHI) in reduction of spatial interpolation error for daily maximum temperature compared with that by the original OHI. We collected daily maximum temperature data from 7 sites in a mountainous watershed with a $149 km^2$ area and a 795m elevation range ($651{\sim}1,445m$) in Pyongchang, Kangwon province. Northern exposure index was calculated for the entire 166,050 grid cells constituting the watershed based on a 30-m digital elevation model. Daily OHI was calculated for the same watershed ana regressed to the variation of NEI. The regression equations were used to estimate N-OHI for 15th of each month. Deviations in daily maximum temperature at 7 sites from those measured at the nearby synoptic station were calculated from June 2006 to February 2007 and regressed to the N-OHI. The same procedure was repeated with the original OHI values. The ratio sum of square errors contributable by the N-OHI were 0.46 (winter), 0.24 (fall), and 0.01 (summer), while those by the original OHI were 0.52, 0.37 and 0.15, respectively.

A Study on a Parcel Presentation Technique of Cadastral Map for Enhancing Utilization of National Spatial Data Infrastructure (국가공간정보인프라 활용향상을 위한 지적도 일필지 표현기법 모형 연구)

  • Jang, Yong-Gu;Kim, Jong-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.3-10
    • /
    • 2008
  • Cadastral map is a public book that has been composed by continuous parcel having location, number, classification, boundary and an area based on Cadastral Law. A few years ago, cadastral map had been managed by form drawn on 2 dimension plane paper with 7 regular scales. Recently as computer systems are upgrading, cadastral map was able to have a chance to develope one step. Its type has been remade from raster to vector. In result, the cadastral map of vector type becomes to apply variously. Therefore, digital cadastral map has been ready a system to be use with multi-propose by KLIS(Korean Land Information System). In this research, it concretely want presentation of status using land more than original parcel on basic coordination cadastral map and KLIS(Korean Land Information System). The cadastral map is composed as parcel unit was applied by new presentation technique to "Model Research on One Parcel Presentation Technique for Land Status of Cadastral Map". The function of cadastral map on One Parcel Presentation Technique which is not only location relation of possession right and expression of states using land in 28 classifications demonstrated on the cadastral law but also used as foundation data of GIS construct business is developed by lines and classification of parcel to center around public sites of roads, rails, drains and rivers. especially, this research is composed of technique elevation and development of One Parcel Projection Technique of cadastral map in using object of roads among public sites.

  • PDF

A Development of Damaged Spread Model of the Pine Needle Gall Midge Using Satellite Image Data (인공위성 화상데이터를 이용한 솔잎혹파리 피해 확산모델의 개발)

  • Ahn, Ki-Won;Lee, Hyo-Sung;Seo, Doo-Chun;Shin, Sok-Hyo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.2 s.12
    • /
    • pp.105-117
    • /
    • 1998
  • The main object of this study was to prove the effectiveness of satellite Image data for extraction of the pine needle gall midge damaged area in the part of Kangwon-do area, and to present the detailed procedure of a digital image processing for extraction of those damaged area. The effectiveness of extraction of damaged area was improved by using the BRCT(Backwards Radiance Correction Transformation) with DEM for the normalization of topographic effects. The topographic surface analysis of the extracted damaged area revealed that the general damaged area was at south-west and south-east aspect with the slope of 31 to 38 degrees, the temperature of 21 to 25, and 23% to 39% of the highest altitude mountains. The new damaged area in which expanded area was at 27 to 30 degree of slope, the aspect of 46 to 180 degrees, the temperature of $11^{\circ}C\;to\;12^{\circ}C$ and 27% to 39% of the highest altitude mountains. The NDI(New Damaged Index) was developed using the environment factor and simple vegetation index.

  • PDF

Advanced National Base Map by Using High-Resolution Digital Aerial Photograph (고해상도 디지털 항공사진을 이용한 국가기본도 고도화 방안)

  • Lee, Hyun-Jik;Koo, Dae-Sung;Park, Chan-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.135-143
    • /
    • 2010
  • The national base map has its value sand roles as the basic spatial information of the nation. The current national base map that is a 1/5,000 digital map, however, has failed to perform its roles as basic spatial information due to the limitations with its quality and accuracy and requires measures to complement them. Thus this study set out to suggest ways to advance the current 1/5,000 national base map, selected topography and natural features of a digital map that could be made with GSD 0.25m digital aerial photographs, and set up the optimal ways to make a digital map by conducting an experiment of making an optimal digital map with such photographs. It also analyzed the map made with GSD 0.25m digital aerial photographs for accuracy and usability. In order to establish a set of criteria of making a digital map with GSD 0.25m digital aerial photographs, the investigator carried out analyses and picked topography and natural features items, which include 9 large categories, 31 medium categories, and 509 small categories. Then an experiment of making a digital map was conducted according to the digital map making method. As a result, solid drawing was selected as the optimal way to making a digital map, and the optimal process was established. Using the research achievements, a model digital map was made with GSD 0.25mm digital aerial photographs. The map recorded about two times horizontal and vertical location accuracy than the old 1/5,000 digital map and was capable of detailed descriptions of topography and natural features. A new national base map made with GSD 0.25m digital aerial photographs will provide reliable spatial data, thus increasing the level of satisfaction among people and the level of advancement of national base maps.

3D Visualization Techniques for Volcanic Ash Dispersion Prediction Results (화산재 확산 예측결과의 삼차원 가시화 기법)

  • Youn, Jun Hee;Kim, Ho Woong;Kim, Sang Min;Kim, Tae Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • Korea has been known as volcanic disaster free area. However, recent surveying result shows that Baekdu mountain located in northernmost in the Korean peninsula is not a dormant volcano anymore. When Baekdu mountain is erupting, various damages due to the volcanic ash are expected in South Korea area. Especially, volcanic ash in the air may cause big aviation accident because it can hurt engine or gauges in the airplane. Therefore, it is a crucial issue to interrupt airplane navigation, whose route is overlapped with volcanic ash, after predicting three dimensional dispersion of volcanic ash. In this paper, we deals with 3D visualization techniques for volcanic ash dispersion prediction results. First, we introduce the data acquisition of the volcanic ash dispersion prediction. Dispersion prediction data is obtained from Fall3D model, which is volcanic ash dispersion simulation program. Next, three 3D visualization techniques for volcanic ash dispersion prediction are proposed. Firstly proposed technique is so called 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Second technique is a 'Cube in the Cube' which divide the cube in proportion to particle concentration and locates the small cubes. Last technique is 'Semitransparent Volcanic Ash Plane', which laminates the layer, whose grids present the particle concentration, and apply the semitransparent effect. Based on the proposed techniques, the user could 3D visualize the volcanic ash dispersion prediction results upon his own purposes.

Applications of "High Definition Digital Climate Maps" in Restructuring of Korean Agriculture (한국농업의 구조조정과 전자기후도의 역할)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The use of information on natural resources is indispensable to most agricultural activities to avoid disasters, to improve input efficiency, and to increase lam income. Most information is prepared and managed at a spatial scale called the "Hydrologic Unit" (HU), which means watershed or small river basin, because virtually every environmental problem can be handled best within a single HU. South Korea consists of 840 such watersheds and, while other watershed-specific information is routinely managed by government organizations, there are none responsible for agricultural weather and climate. A joint research team of Kyung Hee University and the Agriculture, forestry and Fisheries Information Service has begun a 4-year project funded by the Ministry of Agriculture and forestry to establish a watershed-specific agricultural weather information service based on "high definition" digital climate maps (HD-DCMs) utilizing the state of the art geospatial climatological technology. For example, a daily minimum temperature model simulating the thermodynamic nature of cold air with the aid of raster GIS and microwave temperature profiling will quantify effects of cold air drainage on local temperature. By using these techniques and 30-year (1971-2000) synoptic observations, gridded climate data including temperature, solar irradiance, and precipitation will be prepared for each watershed at a 30m spacing. Together with the climatological normals, there will be 3-hourly near-real time meterological mapping using the Korea Meteorological Administration's digital forecasting products which are prepared at a 5 km by 5 km resolution. Resulting HD-DCM database and operational technology will be transferred to local governments, and they will be responsible for routine operations and applications in their region. This paper describes the project in detail and demonstrates some of the interim results.