• Title/Summary/Keyword: Geospatial Data Model

Search Result 314, Processing Time 0.02 seconds

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

Application of Geomorphological Features for Establishing the Preliminary Landslide Hazard (초기 산사태 위험도 구축을 위한 지형요소의 활용)

  • Cha, A Reum;Kim, Tai Hoon;Gang, Seok Koo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2015
  • Due to the characteristics of landslide disasters including debris flow, the rapid speed to downward and difficulty to respond or evacuate from them, it is imperative to identify their potential hazards and prepare the reduction plans. However, the current landslide hazards generated by a variety of methods has been raised its accuracy because of the complexity of input data and their analyses, and the simplification of the landslide model. The main objective of this study is, therefore, to evaluate the preliminary landslide hazard based on the identification of geomorphological features. Especially, two methodologies based on the statistics of the directional data, Vector dispersion and Planarity analyses, are used to find some relationships between geomorphological characteristics and the landslide hazard. Results show that both methods well discriminate geomorphological features between stable and unstable domains in the landslide areas. Geomorphological features are closely related to the landslide hazard and it is imperative to maximize their characteristics by adapting multiple models rather than individual model only. In conclusions, the mechanism of landslide is not determined solely by a simple cause but the complex natural phenomenon caused by the interactions of the numerous factors and it is of primary importance to require additional researches for the outbreaking mechanism that are based on various methodologies.

Geographically Weighted Regression on the Characteristics of Land Use and Spatial Patterns of Floating Population in Seoul City (서울시 유동인구 분포의 공간 패턴과 토지이용 특성에 관한 지리가중 회귀분석)

  • Yun, Jeong Mi;Choi, Don Jeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.77-84
    • /
    • 2015
  • The key objective of this research is to review the effectiveness of spatial regression to identify the influencing factors of spatial distribution patterns of floating population. To this end, global and local spatial autocorrelation test were performed using seoul floating population survey(2014) data. The result of Moran's I and Getis-Ord $Gi^*$ as used in the analysis derived spatial heterogeneity and spatial similarities of floating population patterns in a statistically significant range. Accordingly, Geographically Weighted Regression was applied to identify the relationship between land use attributes and population floating. Urbanization area, green tract of land of micro land cover data were aggregated in to $400m{\times}400m$ grid boundary of Seoul. Additionally public transportation variables such as intersection density transit accessibility, road density and pedestrian passage density were adopted as transit environmental factors. As a result, the GWR model derived more improved results than Ordinary Least Square(OLS) regression model. Furthermore, the spatial variation of applied local effect of independent variables for the floating population distributions.

Update of Digital Map by using The Terrestrial LiDAR Data and Modified RANSAC (수정된 RANSAC 알고리즘과 지상라이다 데이터를 이용한 수치지도 건물레이어 갱신)

  • Kim, Sang Min;Jung, Jae Hoon;Lee, Jae Bin;Heo, Joon;Hong, Sung Chul;Cho, Hyoung Sig
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.3-11
    • /
    • 2014
  • Recently, rapid urbanization has necessitated continuous updates in digital map to provide the latest and accurate information for users. However, conventional aerial photogrammetry has some restrictions on periodic updates of small areas due to high cost, and as-built drawing also brings some problems with maintaining quality. Alternatively, this paper proposes a scheme for efficient and accurate update of digital map using point cloud data acquired by Terrestrial Laser Scanner (TLS). Initially, from the whole point cloud data, the building sides are extracted and projected onto a 2D image to trace out the 2D building footprints. In order to register the footprint extractions on the digital map, 2D Affine model is used. For Affine parameter estimation, the centroids of each footprint groups are randomly chosen and matched by means of a modified RANSAC algorithm. Based on proposed algorithm, the experimental results showed that it is possible to renew digital map using building footprint extracted from TLS data.

A Study on Utilization 3D Shape Pointcloud without GCPs using UAV images (UAV 영상을 이용한 무기준점 3D 형상 점군데이터 활용 연구)

  • Kim, Min-Chul;Yoon, Hyuk-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • Recently, many studies have examined UAVs (unmanned aerial vehicles), which can replace and supplement existing surveying sensors, systems, and images. This study focused on the use of UAV images and assessed the possibility of utilization in areas where it is difficult to obtain GCPs (ground control points), such as disasters. Therefore, 3D (dimensional) pointcloud data were generated using UAV images and the absolute/relative accuracy of the generated model data using GCPs and without GCPs was assessed. The results showed the 3D shape pointcloud generated by UAV image matching was proven if the relative accuracy was set, regardless of whether GCPs were used or not; the quantitative measurement error rate was within 1%. Even if the absolute accuracy was low, the 3D shape pointcloud that had been post processed quickly was sufficient to be utilized when it is impossible to acquire GCPs or urgent analysis is required. In particular, the results can obtain quantitative measurements and meaningful data, such as the length and area, even in cases with the ground reference point surveying and post-process.

Analysis of Airborne LiDAR-Based Debris Flow Erosion and Deposit Model (항공LiDAR 자료를 이용한 토석류 침식 및 퇴적모델 분석)

  • Won, Sang Yeon;Kim, Gi Hong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.59-66
    • /
    • 2016
  • The 2011 debris flow in Mt. Umyeonsan in Seoul, South Korea caused significant damages to the surrounding urban area, unlike other similar incidents reported to have occurred in the past in the country's mountainous regions. Accordingly, landslides and debris flows cause damage in various surroundings, regardless of mountainous area and urban area, at a great speed and with enormous impact. Hence, many researchers attempted to forecast the extent of impact of debris flows to help minimize the damage. The most fundamental part in forecasting the impact extent of debris flow is to understand the debris flow behavior and sedimentation mechanism in complex three-dimensional topography. To understand sedimentation mechanism, in particular, it is necessary to calculate the amount of energy and erosion according to debris flow behavior. The previously developed debris flow models, however, are limited in their ability to calculate the erosion amount of debris flow. This study calculated the extent of damage caused by a massive debris flow that occurred in 2011 in Seoul's urban area adjacent to Mt. Umyeonsan by using DEM, created from aerial photography and airborne LiDAR data, for both before and after the damage; and developed and compared a debris flow behavioral analysis model that can assess the amount of erosion based on energy theory. In addition, simulations using the existing debris flow model (RWM, Debris 2D) and a comprehensive comparison of debris flow-stricken areas were performed in the same study area.

Using Google Earth for a Dynamic Display of Future Climate Change and Its Potential Impacts in the Korean Peninsula (한반도 기후변화의 시각적 표현을 위한 Google Earth 활용)

  • Yoon, Kyung-Dahm;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.275-278
    • /
    • 2006
  • Google Earth enables people to easily find information linked to geographical locations. Google Earth consists of a collection of zoomable satellite images laid over a 3-D Earth model and any geographically referenced information can be uploaded to the Web and then downloaded directly into Google Earth. This can be achieved by encoding in Google's open file format, KML (Keyhole Markup Language), where it is visible as a new layer superimposed on the satellite images. We used KML to create and share fine resolution gridded temperature data projected to 3 climatological normal years between 2011-2100 to visualize the site-specific warming and the resultant earlier blooming of spring flowers over the Korean Peninsula. Gridded temperature and phonology data were initially prepared in ArcGIS GRID format and converted to image files (.png), which can be loaded as new layers on Google Earth. We used a high resolution LCD monitor with a 2,560 by 1,600 resolution driven by a dual link DVI card to facilitate visual effects during the demonstration.

A GIS Based Technique for Analyzing Traffic Accidents (GIS를 이용한 교통사고의 분석 기법 개발)

  • Choi, Kee-Choo;Park, In-Chol;Oh, Sei-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.35-51
    • /
    • 1998
  • This article aims at presenting a new framework for traffic accident analysis by proposing a new methodology for the management of the accident data and by establishing the relationship between accidents and roadway characteristics within it For the first issue, authors introduced geographic information system (GIS) into the analysis framework of the accident data since it is believed that analysis based on GIS seems to provide more effective information in reducing accidents. Point-based, line-based, and polygon (grid)-based approaches were set of along with concrete examples. Especially, the location-based scores such as localization, specialization coefficients, and Tress score have been added to identify the intensity of certain accident types within study area or grids. The second issue addressed the equation formulation of accident and fatality numbers with roadway characteristics like number of intersections and road length in a grid with a sense that (1) accidents on roadways are the function of the roadway physical characteristics rather than the socio-economical secondary data (2) the equation can be applied to the any 'suggested' area, not just region or nation, and (3) the accident forecasting model should emphasize the accident location itself more than any other factors. Some equations based on those assumption have been derived along with some future research agenda.

  • PDF

Quality Analysis of Three-Dimensional Geo-spatial Information Using Digital Photogrammetry (수치사진측량 기법을 이용한 3차원 공간정보의 품질 분석)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.141-149
    • /
    • 2010
  • Three-dimensional geo-spatial information is important for the efficient use and management of the country and the three-dimensional expression and analysis of urban projects, such as urban plans devised by local governments and urban management. Thanks to the revitalization of the geo-spatial information service industry, it is now being variously used not only in public but also private areas. For the creation of high-guiltily three-dimensional geo-spatial information, emphasis should be placed on not only the quality of the source image and three-dimensional geo-spatial model but also the level of visualization, such as level of detail and texturing. However, in the case of existing three-dimensional geo-spatial information, its establishment process is complicated and its data are not updated frequently enough, as it uses ready-created digital maps. In addition, as it uses Ortho Images, the images exist Relief displacement. As a result, the visibility is low and the three-dimensional models of artificial features are simplified to reach LoD between 2 and 3, making the images look less realistic. Therefore, this paper, analyzed the quality of three-dimensional geo-spatial information created using the three-dimensional modeling technique were applied using Digital photogrammetry technique, using digital aerial photo images by an existing large-format digital camera and multi-looking camera. The analysis of the accuracy of visualization information of three-dimensional models showed that the source image alone, without other visualization information, secured the accuracy of 84% or more and that the establishment of three-dimensional spatial information carried out simultaneously with filming made it easier to gain the latest data. The analysis of the location accuracy of true Ortho images used in the work process showed that the location accuracy was better than the allowable horizontal position accuracy of 1:1,000 digital maps.

Development of Standard Work Type to Utilize Drone at Expressway Construction Sites (고속도로 건설현장에서 드론 활용을 위한 표준공종 개발)

  • Lee, Suk Bae;Jeong, Min;Auh, Su Chang;Kim, Jong Jeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.461-468
    • /
    • 2021
  • The role of drones is increasing day by day in smart construction that manages construction sites with 3D data in every life cycles. This is because both the digital surface model (DSM) and the orthoimage obtained for the construction site through the drone are made of point cloud data. This study aims to develop standard work types for drone use in order to systematically utilize drones in expressway construction sites. For the study, two expressway construction sites in Korea were set as test beds, and construction types applicable to drones were derived and verified through a pilot project. As a result of the study, three construction work types were developed for road planning, road design and maintenance, respectively, and in road construction, twenty-one detailed construction types were developed for five construction work types. It is expected that drones can be used more systematically not only at expressway construction sites, but also at other road construction sites by utilizing the "standard work type at expressway construction site for drone use" developed in this study.