• Title/Summary/Keyword: Geophysical Data

Search Result 967, Processing Time 0.023 seconds

Case Studies of Geophysical Mapping of Hazard and Contaminated Zones in Abandoned Mine Lands (폐광 부지의 재해 및 오염대 조사관련 물리탐사자료의 고찰)

  • Sim, Min-Sub;Ju, Hyeon-Tae;Kim, Kwan-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.525-534
    • /
    • 2014
  • Environmental problems typically occurring in abandoned mine lands (AML) include: contaminated and acidic surface water and groundwater; stockpiled waste rock and mill tailings; and ground subsidences due to mining operations. This study examines the effectiveness of various geophysical techniques for mapping potential hazard and contaminated zones. Four AML sites with sedimentation contamination problems, acid mine drainage (AMD) channels, ground subsidence, manmade liner leakage, and buried mine tailings, were selected to examine the applicability of various geophysical methods to the identification of the different types of mine hazards. Geophysical results were correlated to borehole data (core samples, well logs, tomographic profiles, etc.) and water sample data (pH, electrical conductivity (EC), and heavy metal contents). Zones of low electrical resistivity (ER) corresponded to areas contaminated by heavy metals, especially contamination by Cu, Pb, and Zn. The main pathways of AMD leachate were successfully mapped using ER methods (low anomaly peaks), self-potential (SP) curves (negative peaks), and ground penetrating radar (GPR) at shallow penetration depths. Mine cavities were well located based on composite interpretations of ER, seismic tomography, and well-log records; mine cavity locations were also observed in drill core data and using borehole image processing systems (BIPS). Damaged zones in buried manmade liners (used to block descending leachate) were precisely detected by ER mapping, and buried rock waste and tailings piles were characterized by low-velocity zones in seismic refraction data and high-resistivity zones in the ER data.

Geostatistical Integration Analysis of Geophysical Survey and Borehole Data Applying Digital Map (수치지도를 활용한 탄성파탐사 자료와 시추조사 자료의 지구통계학적 통합 분석)

  • Kim, Hansaem;Kim, Jeongjun;Chung, Choongki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.65-74
    • /
    • 2014
  • Borehole investigation which is mainly used to figure out geotechnical characterizations at construction work has the benefit that it provides a clear and convincing geotechnical information. But it has limitations to get the overall information of the construction site because it is performed at point location. In contrast, geophysical measurements like seismic survey has the advantage that the geological stratum information of a large area can be characterized in a continuous cross-section but the result from geophysics survey has wide range of values and is not suitable to determine the geotechnical design values directly. Therefore it is essential to combine borehole data and geophysics data complementally. Accordingly, in this study, a three-dimensional spatial interpolation of the cross-sectional distribution of seismic refraction was performed using digitizing and geostatistical method (krigring). In the process, digital map were used to increase the trustworthiness of method. Using this map, errors of ground height which are broken out in measurement from boring investigation and geophysical measurements can be revised. After that, average seismic velocity are derived by comparing borehole data with geophysical speed distribution data of each soil layer. During this process, outlier analysis is adapted. On the basis of the average seismic velocity, integrated analysis techniques to determine the three-dimensional geological stratum information is established. Finally, this analysis system is applied to dam construction field.

Capacitively-coupled Resistivity Method - Applicability and Limitation (비접지식 전기비저항 탐사 - 적용성과 한계)

  • Lee Seong Kon;Cho Seong-Jun;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • Capacitively-coupled resistivity (CCR) system is known to be very useful where galvanic contact to earth is impossible, such as the area covered with thick ice, snow, concrete or asphalt. This system injects current non-galvanically, i.e., capacitively to earth through line antenna and measures potential difference in a same manner. We derived geometric factor for two types of antenna configuration and presented the method of processing and converting the data obtained with CCR system suitable to conventional resistivity inversion analysis. The CCR system, however, has limitations on use at conductive area or electrically noisy area since it is very difficult to inject sufficient current to earth with this system as with conventional resistivity system. This causes low SM ratio when acquiring data with CCR system and great care must be taken in acquiring data with this system. Additionally the uniform contact between line antennas and earth is also crucial factor to obtain good S/N ratio data. The CCR method, however, enables one to perform continuous profiling over a survey line by dragging entire system and thus will be useful in rapid investigation of conductivity distribution in shallow subsurface.

Integration of Geophysical Properties and Geospatial Information for Telecommunication Modeling

  • Kim, Jeong-Woo;Lee, Dong-Cheon;Pack, Jeong-Ki;Yom, Jae-Hong;Kwon, Jay-Hyon;Jeong, Nam-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.745-745
    • /
    • 2002
  • Both geophysical and geospatial data provide important information in the establishment of the optimal telecommunication systems especially in the mobile telecommunication environment. The objective of this study is to utilize geophysical properties and geospatial information in the analysis of the telecommunication environment through point-to-point wave property modeling. Geophysical properties associated with wave propagation parameters of the earth surface were analyzed based on hierarchical land classification using Landsat ETM+ and IKONOS images. Three-dimensional geospatial information was obtained by processing stereo aerial images. The results show that the accurate geospatial information and reliable geosphysical property of the surface improve the prediction of receiving power of the receivers located near corners of the buildings where diffractions occur. The wave property model developed from accurate telecommunication environment could be applied to optimal cell planning and delay time analysis.

  • PDF

GPS/Levelling Geoid of the Southern Korean Peninsula

  • Choi, Kwang-Sun;Lee, Jung-Mo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • The GPS/levelling geoid calculated from GPS survey that data at 123 bench marks represents an appropriate regional geoid of the southern Korean peninsula. The GPS/levelling geoid fits best to the geoid calculated from the EGM96 geopotential model of degree and order to 360 with RMS difference 0.176 m. The good agreement of the GPS/levelling geoid with the EGM96 geoid suggests that the bench mark network is well established in Korea and the EGM96 geopotential model well represents the gravity field in the southern Korean peninsula.

  • PDF

Photoelectron Production and Transport in the Upper Atmosphere

  • Kim, J-Hoon
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • Theory and observations relating to the photoelectrons are reviewed. The photoelectrons play a very important role in the photochemistry and energetics of the upper atmosphere. It is a dominant heating source for the ambient electrons in the ionosphere. This paper covers the solar EUV flux calculation, local photoelectron production rates and the two-stream approximation of the photoelectron transport in the upper atmosphere. Some data are compiled and tabulated for reference.

  • PDF

Research on The Method of Encoding Geography Information Based on XML

  • Wang, JianChao;Qin, XuWen
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1386-1388
    • /
    • 2003
  • This paper analyzes the advantage of the XML, and studies the simple feature object model and Geography Markup Language that proposed by the Open GIS Consortium (OGC). We discussed the means of encoding the geographical data based on XML.

  • PDF

비위생 매립장의 침출수 유동경로 탐지를 위한 물리탐사의 적용성

  • 박삼규;김을영;최보규;이병호;박용기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.180-183
    • /
    • 2003
  • Recently, the pollution of soil and groundwater becomes a serious social problem, and geophysical exploration methods have been introduced as a remedial investigation method of subsurface. Digital technologies such as personal computer have revolutionized our ability to acquire large volumes of data in a short term, and to produce more reliable results for subsurface image. Also, color graphics easily visualizes the survey results in a more understandable manner, and it is widely used for not only characterizing the contaminated subsurface but also monitoring contaminant and remedial process. In this paper, electrical resistivity survey were carried out In order to understand characteristics of waste landfills, and the applicability of geophysical prospecting to site assessment of waste landfill was also tested. According to the result, electrical resistivity survey were effective in estimating distribution of the leachate plume.

  • PDF

Field experiment of ERT to detect a tunnel (터널 탐지를 위한 전기비저항 토모그래피 응용 실험)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Cho, Seong-Jun;Kobayashi, Takao
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.215-218
    • /
    • 2007
  • Tunnel detection is known to be one of the challenging problems in geophysical society. Among various geophysical methods, we tried to examine the applicability of electrical resistivity tomography (ERT) method to detect empty tunnel. In this study, we analyzed the ERT data acquired at the test site for tunnel detection. The inversion results have shown reasonable image of the tunnel although the resolution is quite poor. Moreover, we could obtain the three-dimensional attitude of tunnel through 3-D ERT imaging. Therefore, we expect that ERT can make contribution to the tunnel detection problem and further research effort such as fusion of geophysical methods will provide more reliable tunnel detection capability.

  • PDF

Application of Multivariate Statistical Analysis Technique in Landfill Investigation (매립물 특성 조사를 위한 다변량 통계분석 기법의 응용)

  • Kwon, Byung-Doo;Kim, Cha-Soup
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.515-521
    • /
    • 1997
  • To investigate the nature of the waste materials in the Nanjido Landfill, we have conducted multivariate statistical analysis of geophysical data set comprised of magnetic, gravity, LandSat TM thermal band and surface depression measurement data. Because these data sets show different responses to the depth, we have transformed the observed total field magnetic data and gravity data to the residual reduced-to-pole(RTP) magnetic anomalies and the three dimensional density anomalies, respectively, and utilized the informations about the upper shallow part of the landfills only in the following process. For the statistical analysis at the points of depression measurement, the magnetic, density and LandSat data values at these points are determined by interpolation process. Since the multivarite statistical analysis technique utilizes a clustering algorithm for classification of data set and we have measured the dissimilarity between objects by using Euclidean distance, standardization was applied prior to distance calculation in order to eliminate any scaling effects due to different measurement unit of each data set. The hierarchial grouping technique was used to construct the dendrogram. The optimum number of statistical groups(clusters), which are classified on the basis of geophysical and geotechnical characteristics, appeared to be six on the resulting dendrogram. The result of this study suggests that the dimension and nature of the multicomponent waste landfills can be identified by application of the multivarite statistical analysis technique to integrated geophysical data sets.

  • PDF