• Title/Summary/Keyword: Geometry function

Search Result 652, Processing Time 0.023 seconds

The Effect of Forebody Section Shape on Wave Loads (선수선형(船首船型)의 파랑하중(波浪荷重) 특성(特性))

  • J.H.,Hwang;S.J.,Lee;J.M.,Yoo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 1982
  • The effects of the forebody geometry of ships on the response function of wave loads are investigated by numerical calculations based on a strip method. For the vertical wave loads both shearing forces and bending moments, the V-shaped bow gives greater responses than the U-shaped one in regular oblique waves. These results have been clarified by the vector diagram of all static and dynamic components contributing to the resultant wave bending moment. In the present evaluation the phase relation among the components plays an important role. And the effect of the forebody geometry on lateral wave loads seems to be negligible from the result of the present investigation.

  • PDF

Lane Detection Using Road Geometry Estimation

  • Lee, Choon-Young;Park, Min-Seok;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.226-231
    • /
    • 1998
  • This paper describes how a priori road geometry and its estimation may be used to detect road boundaries and lane markings in road scene images. We assume flat road and road boundaries and lane markings are all Bertrand curves which have common principal normal vectors. An active contour is used for the detection of road boundary, and we reconstruct its geometric property and make use of it to detect lane markings. Our approach to detect road boundary is based on minimizing energy function including edge related term and geometric constraint term. Lane position is estimated by pixel intensity statistics along the parallel curve shifted properly from boundary of the road. We will show the validity of our algorithm by processing real road images.

  • PDF

Study on the Theoretical Analysis of Lateral Guiding in Stripe geometry DH Laser Diode (스트라입구조형 DH Laser Diode의 Lateral Guiding 해석에 관한 연구)

  • Kim, Eun-Su;Park, Yeong-Gyu;Yang, In-Eung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.5
    • /
    • pp.1-7
    • /
    • 1980
  • In this paper, the theoretical analysis of lateral guiding in stripe geometry DH laser diode is performed. In the analysis, the carrier density profile is modeled as the function of stripe width and the beam width variations related to the stripe width are calculated using the perturbed mode theory. Finally the results of this paper are compared and analyzed with the Hakki's calculated data & kirkby's experimental data.

  • PDF

ADJOINT METHOD FOR CONTROLLED CAVITATION INVERSE NOZZLE DESIGN

  • Petropoulou, S.;Gavaises, M.;Theodorakakos, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.283-288
    • /
    • 2006
  • A mathematical methodology is proposed for designing nozzle hole shapes producing controlled geometric cavitation. The proposed methodology uses an unstructured RANS flow solver, with the ability to compute sensitivity derivatives via an adjoint algorithm. The adjoint formulation for the N-S equations is presented while variation of the turbulence viscosity is not taken into account during the geometry modifications. The sensitivities are calculated in a mode independently of the shape parameterisation. The method is used to develop and evaluate conceptual shapes for nozzle hole cavitation reduction. The localized region at the hole inlet producing cavitation, is parameterised using its radius of curvature, while a cost function is formulated to eliminate the negative pressures present at this location. Sensitivity derivatives are used to assess the dependence of the localized region on the minimum pressure, and to drive the geometry to the targeted shape. The results show that the computer model can provide nozzle hole entry shapes that produce predefined flow characteristics, and thus can be used as an inverse design tool for nozzle hole cavitation control.

Extension of AFEN Methodology to Multigroup Problems in Hexagonal-Z Geometry

  • Cho, Nam-Zin;Kim, Yong-Hee;Park, Keon-Woo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.142-147
    • /
    • 1996
  • The analytic function expansion nodal (AFEN) method has been successfully applied to two-group neutron diffusion problems. In this paper, the AFEN method is extended to solve general multigroup equations for any type of geometries. Also, a suite of new nodal codes based on the extended AFEN theory is developed for hexagonal-z geometry and applied to several benchmark problems. Numerical results obtained attest to their accuracy and applicability to practical problems.

  • PDF

PSF Deconvolution on the Integral Field Unit Spectroscopy Data

  • Chung, Haeun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.58.4-58.4
    • /
    • 2019
  • We present the application of the Point Spread Function (PSF) deconvolution method to the astronomical Integral Field Unit (IFU) Spectroscopy data focus on the restoration of the galaxy kinematics. We apply the Lucy-Richardson deconvolution algorithm to the 2D image at each wavelength slice. We make a set of mock IFU data which resemble the IFU observation to the model galaxies with a diverse combination of surface brightness profile, S/N, line-of-sight geometry and Line-Of-Sight Velocity Distribution (LOSVD). Using the mock IFU data, we demonstrate that the algorithm can effectively recover the stellar kinematics of the galaxy. We also show that lambda_R_e, the proxy of the spin parameter can be correctly measured from the deconvolved IFU data. Implementation of the algorithm to the actual SDSS-IV MaNGA IFU survey data exhibits the noticeable difference on the 2D LOSVD, geometry, lambda_R_e. The algorithm can be applied to any other regular-grid IFS data to extract the PSF-deconvolved spatial information.

  • PDF

Crack growth behavior in the lntegrally stiffened plates(1) -Numerical evaluation of SIF (일체형 보강판의 균열성장거동(I)-SIF의 수치해석)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.150-156
    • /
    • 1997
  • Three dimensional finite element analysis was conducted to estimate the effect of shape parameters (plate width and thickness) on the stress intensity factor for crack in the integrally stiffened plate. Analysis was done for width ratios of 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and thickness ratios of 2, 3, 4, 6. Based on these results, an empirical equation of geometry factor is formulated as a function of crack length and thickness ratio.

  • PDF

COMPARISON OF TWO SCATTERING PHASE FUNCTIONS IN MULTIPLE SCATTERING ENVIRONMENT (다중산란 환경에서의 두개의 산란 위상함수 비교)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.4
    • /
    • pp.113-118
    • /
    • 2010
  • The Henyey-Greenstein (H-G) phase function, which is characterized by a single parameter, has been generally used to approximate the realistic dust-scattering phase function in investigating scattering properties of the interstellar dust. Draine (2003) proposed a new analytic phase function with two parameters and showed that the realistic phase function is better represented by his phase function. If the H-G and Draine's phase functions are significantly different, using the H-G phase function in radiative transfer models may lead to wrong conclusions about the dust-scattering properties. Here, we investigate whether the H-G and Draine's phase functions would indeed produce significant differences in radiative transfer calculations for two simple configurations. For the uniformly distributed dust with an illuminating star at the center, no significant difference is found. However, up to ~ 20% of difference is found when the central star is surrounded by a spherical-shell dust medium and the radiation of $\lambda$ < $2000\;{\AA}$ is considered. It would mean that the investigation of dust-scattering properties using the H-G phase function may produce errors of up to ~ 20% depending on the geometry of dust medium and the radiation wavelength. This amount of uncertainty would be, however, unavoidable since the configurations of dust density and radiation sources are only approximately available.

NUMERICAL STUDY OF TURBINE BLADE COOLING TECHNIQUES (터빈 블레이드 냉각시스템에 관한 수치해석적 연구)

  • Kim, K.Y.;Lee, K.D.;Moon, M.A.;Heo, M.W.;Kim, H.M.;Kim, J.H.;Husain, A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.530-533
    • /
    • 2010
  • This paper presents numerical analysis and design optimization of various turbine blade cooling techniques with three-dimensional Reynolds-averaged Navier-Stokes(RANS) analysis. The fluid flow and heat transfer have been performed using ANSYS-CFX 11.0. A fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness with the radial basis neural network method. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. The impingement jet cooling has been performed to investigate heat transfer characteristic with geometry variables. Distance between jet nozzle exit and impingement plate, inclination of nozzle and aspect ratio of nozzle hole are considered as geometry variables. The area averaged Nusselt number is evaluated each geometry variables. A rotating rectangular channel with staggered array pin-fins has been investigated to increase heat transfer performance ad to decrease friction loss using KRG modeling. Two non-dimensional variables, the ratio of the eight diameter of the pin-fins and ratio of the spacing between the pin-fins to diameter of the pin-fins selected as design variables. A rotating rectangular channel with staggered dimples on opposite walls are formulated numerically to enhance heat transfer performance. The ratio of the dimple depth and dimple diameter are selected as geometry variables.

  • PDF

Understanding Variables and Enhancing the Level of Generalization in Problem Solving Utilized Dynamic Geometry Environment (동적 기하 환경을 활용한 문제 해결 과정에서 변수 이해 및 일반화 수준 향상에 관한 사례연구)

  • Ban, Eun Seob;Lew, Hee Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.89-112
    • /
    • 2017
  • In this study we have analyzed processes of generalization in which students have geometrically solved cubic equation $x^3+ax=b$, regarding geometrical solution of cubic equation $x^3+4x=32$ as examples. The result of this research indicate that students could especially re-interpret the geometric solution of the given cubic equation via dynamically understanding the variables in dynamic geometry environment. Furthermore, participants could simultaneously re-interpret the given geometric solution and then present a different geometric solutions of $x^3+ax=b$, so that the level of generalization could be improved. In conclusion, the study could provide useful pedagogical implications in school mathematics that the dynamic geometry environment performs significant function as a means of students-centered exploration when understanding variables and enhancing the level of generalization in problem solving.