• Title/Summary/Keyword: Geometry Control

Search Result 769, Processing Time 0.031 seconds

Flume Experiments on Channel Morphology at a Tributary Junction (하천 합류점의 하도형상에 관한 수로실험)

  • Taeho Kim
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.3
    • /
    • pp.355-364
    • /
    • 1998
  • Flume experiments are conducted to describe the channel morphology at a tributary junction and to examine the influence of channel arrangements and hydrologic conditions on the channel morphology. When flow momenta of two tributaries are equal, a receiving stream tends to align with an axis bisecting junction angle. It causes lateral migration of a receiving stream according to an initial channel arrangement. As a result, the post-fonfluent channel morphology varies with plan geometry of a confluence such as symmetry, transition and asymmetry. Bed scour is the most notable morphology within a junction site. Its shape is characterized by steep walls which are primarily influenced by junction angle. Key control of scour dimension is also junction angle. Although the principle of accordant junction has been undoubtedly accepted, discordance is commonly developed at model and natural stream confluences. Unit discharge ratio of confluent streams is the most crucial factor because both discharge and sediment concentration ratios have an effect on discordance at a junction.

  • PDF

A Study on the Resin Flow through Fibrous Preforms in the Resin Transfer Molding Process (수지이동 성형공정에서 섬유직조망내의 수지유동에 관한 연구)

  • 김성우;이종훈;이미혜;남재도;이기준
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.70-81
    • /
    • 1999
  • Resin transfer molding(RTM) as a composite manufacturing process is currently of great interest in the aerospace industry requiring high performance composite parts. In this study, an analysis of mold filling in the RTM process was carried out by numerical simulation using finite element/control volume technique. Experimental work for the visualization of resin flow through fibrous preform was also conducted in order to quantitatively measure the permeabilities of the fiber mats and to evaluate the validity of the developed numerical code. The different types of fiber mats and silicon oils were selected as reinforcements and resin materials, respectively. The effects of fibrous preform structure, mold geometry, and preplaced insert on the flow front patterns during mold filling were examined by integrating the model predictions and experimental results. The flow fronts predicted by numerical simulation were in good agreement with those observed experimentally. However, according to the regions of the mold, some deviations between predicted and observed flow fronts could be found because of non-uniform fiber volume fraction. Weldline locations for the resin flow through round insert preplaced in the mold could be qualitatively deduced based on predicted flow fronts.

  • PDF

The Invention of Non-Release bolt by controlling expansion rate of bolt body (볼트 몸체 팽창률 제어를 통한 풀림방지볼트 개발)

  • Kim, Dong-Jin;Lee, Yeung-Jo;Lee, Jung-Bok;Kim, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.523-526
    • /
    • 2010
  • In this study, we demonstrated a development of a non-releasing bolt which is fastened with a target by expanding a certain area of a bolt body. Being released a bolt causes many problems in a field where bolts are used. In order to figure out the problems, currently, many types of a non-releasing bolt have been developed and have been using. Unfortunately, however, they do not perfectly function not to be released. Therefore, the structures builded with bolts have many problems caused by external stress such as vibration and shock, and thus the bolts have to be regularly tightened for maintenance. With the important factors of internal geometry, the amount of explosive, and the firing pin, we developed a technology which could control the expansion degree of a certain area on a bolt body. Based on the results, it was founded that the performance of non-releasing was linearly proportional to the degree of body expansion.

  • PDF

A Study I on the Sizing Accuracy of the Characterized Defects of the Reactor Vessel Head Penetrations (원자로헤드 관통관 결함의 검출 정확성 연구)

  • Chung Tae-hoon;Kim Han-Jong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.216-227
    • /
    • 2005
  • The head penetrations for control rod drive mechanism and instrumentation systems are installed at the reactor pressure vessel head of PWRs. Primary coolant water and the operating conditions of PWR plants can cause cracking of these nickel-based alloy through a process called primary water stress corrosion cracking (PWSCC). Inspection of the head penetrations to ensure the integrity of the head penetrations has been interested since reactor coolant leakages were found at U. S. reactors in 2000 and 2001. The complex geometry of the head penetrations and the very low echo amplitude from the fine, multiple flaws due to the nature of the see made it difficult to detect and size the flaws using conventional pulse-echo UT methods. Time-of-flight-diffraction technique, which utilizes the time difference between the flaw tips while pulse-echo does the flaw response amplitude from the flaw, has been selected for this inspection for it's best performance of the detection and sizing of the head penetration see flaws. This study defines the limits of the detectable and accurately sizable minimum flaw size which can be detected by the General TOFD and the Delta TOFD techniques for circumferentially and axially oriented flaws respectively. These results assures the reliability of the inspection techniques to detect and accurately size for various kind of flaws, and will also be utilized for the future development and qualifications of the TOFD techniques to enhance the detecting sensitivity and sizing accuracy of the flaws of the reactor head penetrations in nuclear power plants.

  • PDF

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

탄소섬유 복합재료 사각튜브의 압추에너지 흡수 특성

  • Han, Chang-Whan;Kim, Keun-Taek;Lee, Jong-Won;Choi, Youn-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.19-31
    • /
    • 2002
  • Crush energy characteristics of graphite/epoxy square tubes are experimentally studied. Effect of the ply orientation on the peak load and the average load is investigated by applying compressive load on the top of the composite square tubes under the stroke control with crosshead speed of 0.003mm/sec and 0.3mm/sec. in addition to the experimental survey, the finite element analysis is used to estimate the peak load of the composite square tubes with [0/90]₄ and [0/±45/90]₂. The first buckling mode of the tube is superimposed to the perfect geometry and the distributed compressive load is applied on the top of the tubes. The applied compressive load that make Tsai-Wu criteria equal to one is regarded as the peak load of the tubes. The experimental data shows that the square tube with [45/-45]₄ has the highest peak load and the square tube with [60/-60]₄ has the average sustained load. The measure peak load of the composite tubes with [0/90]₄ and [0/±45/90]₂agree well with the estimated peak load using the finite element analysis.

  • PDF

A unified rough and finish cut algorithm for NC machining of free form pockets with general polygon - Part 1. Simulation (일반적인 내벽을 가진 자유바닥 곡면 파켓의 NC 가공을 위한 단일화된 황삭과 정삭 알고리즘 - Part 1. Simulation)

  • Park, Yong-hoon;Cho, Chi-woon;Kim, Sang-jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.7-16
    • /
    • 2004
  • The tool path needs to be determined in an efficient manner to generate the final NC (numerical control) code for efficient machining. This is particularly important in machining free form pockets with an arbitrary wall geometry on a three-axis CNC machine. Many CAD/CAM systems use linear interpolation to generate NC tool paths for curved surfaces. However, this needs to be modified to improve the smoothness of the machined bottom surface, reduce machining time and CL (cutter location) file size. Curved machining can be a solution to reduce these problems. The unified rough and finish cut algerian and the tool motion is graphically simulated. In this paper, a grid based 3D navigation algorithm for generating NC tool path data for both linear interpolation and a combination of linear and circular interpolation for three-axis CNC milling of general pockets with sculptured bottom surfaces is developed.

  • PDF

Characteristics of Stacked Probe-Fed Sqare-Ring Microstrip Antenna (적층구조, 프로브 급전방식, 정사각형 링형태 마이크로스트립 안테나 특성에 관한 연구)

  • 이정연;이중근;김성철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.143-152
    • /
    • 2001
  • A method for miniaturization of microstrip patch antenna without degrading its radiation characteristics is investigated in this paper. It involves perforating the patch to form a microstrip square-ring antenna, and it's BW enhancement is investigated numerically and experimentally. A ring geometry introduces additional parameters to the antenna, and those are used to control impedances, resonance frequencies, and bandwidths. For a single square ring antenna, an increase of the size of perforation increases its input impedance, decreases the resonance frequency, and bandwidths. But it affects little on directivity of the antenna. To match the antenna to a transmission line and also enhance its bandwidth, the ring is stacked by a square patch or another square ring. Also numerically simulated results by the IE3D, and experimental data are compared for proof.

  • PDF

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF