• Title/Summary/Keyword: Geometrical stiffness

Search Result 168, Processing Time 0.029 seconds

Nonlinear vibration of SSMFG cylindrical shells with internal resonances resting on the nonlinear viscoelastic foundation

  • Kamran, Foroutan;Habib, Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.767-782
    • /
    • 2022
  • In this paper, the nonlinear vibration behavior of the spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells exposed to the thermal environment and a uniformly distributed harmonic loading using a semi-analytical method is investigated. The cylindrical shell is surrounded by a nonlinear viscoelastic foundation consisting of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The distribution of temperature and material constitutive of the stiffeners are continuously changed through the thickness direction. The cylindrical shell has three layers consisting of metal, FGM, and ceramic. The interior layer of the cylindrical shell is rich in metal, while the exterior layer is rich in ceramic, and the FG material is located between two layers. The nonlinear vibration problem utilizing the smeared stiffeners technique, the von Kármán equations, and the Galerkin method has been solved. The multiple scales method is utilized to examine the nonlinear vibration behavior of SSMFG cylindrical shells. The considered resonant case is 1:3:9 internal resonance and subharmonic resonance of order 1/3. The influences of different material and geometrical parameters on the vibration behavior of SSMFG cylindrical shells are examined. The results show that the angles of stiffeners, temperature, and elastic foundation parameters have a strong effect on the vibration behaviors of the SSMFG cylindrical shells.

A Study on Post-Tensioned Reinforced Concrete Slab by the Beam Theory (포스트텐션된 철근콘크리트 슬래브의 보 이론에 의한 연구)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.24-29
    • /
    • 2009
  • In this paper, a post-tensioned reinforced concrete slab was analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Reinforced concrete slab behave as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis. The result of beam analysis was modified to obtain the solution of the plate analysis.

A variational nodal formulation for multi-dimensional unstructured neutron diffusion problems

  • Qizheng Sun ;Wei Xiao;Xiangyue Li ;Han Yin;Tengfei Zhang ;Xiaojing Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2172-2194
    • /
    • 2023
  • A variational nodal method (VNM) with unstructured-mesh is presented for solving steady-state and dynamic neutron diffusion equations. Orthogonal polynomials are employed for spatial discretization, and the stiffness confinement method (SCM) is implemented for temporal discretization. Coordinate transformation relations are derived to map unstructured triangular nodes to a standard node. Methods for constructing triangular prism space trial functions and identifying unique nodes are elaborated. Additionally, the partitioned matrix (PM) and generalized partitioned matrix (GPM) methods are proposed to accelerate the within-group and power iterations. Neutron diffusion problems with different fuel assembly geometries validate the method. With less than 5 pcm eigenvalue (keff) error and 1% relative power error, the accuracy is comparable to reference methods. In addition, a test case based on the kilowatt heat pipe reactor, KRUSTY, is created, simulated, and evaluated to illustrate the method's precision and geometrical flexibility. The Dodds problem with a step transient perturbation proves that the SCM allows for sufficiently accurate power predictions even with a large time-step of approximately 0.1 s. In addition, combining the PM and GPM results in a speedup ratio of 2-3.

On the wave propagations of football game ball after contacting with the player foot

  • Lei Sun;Cancan Wei;Fei Liu;Lijun Wang;Bo Ren
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.529-542
    • /
    • 2023
  • Wave propagation with high transverse deflection could affect the stability of the ball in its trajectory. For low stiffness balls similar to soccer and volleyball balls, the waves are more noticeable in comparison to other balls like ping-pong ball. On the other hand, the soccer balls are under heavy impact loads from shoots and contacting different objects in the field. The maximum recorded speed of a soccer ball after kicking is the 211 km/hr and the average maximum speed is around 112 km/hr. Therefore, in such speeds the aerodynamic forces become important which are directly related to geometrical shape of the ball. In this regard, the wave propagation in soccer ball is examined in the current study using large deformation shear deformable formulations. Classical relations of stress-strain components are taken into consideration along with minimum total energy principle. The final derived relations were solved by using harmonic differential quadrature method. The results are generally presented ion term of phase velocity as function of different influencing parameters of the materials, geometry and mass of the ball.

Small-scale effects on wave propagation in curved nanobeams subjected to thermal loadings based on NSGT

  • Ibrahim Ghoytasi;Reza Naghdabadi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.187-200
    • /
    • 2024
  • This study focuses on wave propagation analysis in the curved nanobeam exposed to different thermal loadings based on the Nonlocal Strain Gradient Theory (NSGT). Mechanical properties of the constitutive materials are assumed to be temperature-dependent and functionally graded. For modeling, the governing equations are derived using Hamilton's principle. Using the proposed model, the effects of small-scale, geometrical, and thermo-mechanical parameters on the dynamic behavior of the curved nanobeam are studied. A small-scale parameter, Z, is taken into account that collectively represents the strain gradient and the nonlocal parameters. When Z<1 or Z>1, the phase velocity decreases/increases, and the stiffness-softening/hardening phenomenon occurs in the curved nanobeam. Accordingly, the phase velocity depends more on the strain gradient parameter rather than the nonlocal parameter. As the arc angle increases, more variations in the phase velocity emerge in small wavenumbers. Furthermore, an increase of ∆T causes a decrease in the phase velocity, mostly in the case of uniform temperature rise rather than heat conduction. For verification, the results are compared with those available for the straight nanobeam in the previous studies. It is believed that the findings will be helpful for different applications of curved nanostructures used in nano-devices.

Vibration and Impact Transmission for each Variable of Woodpile Metamaterial (우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향)

  • Ha, Young sun;Hwang, Hui Y.;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Metamaterials are complexes of elements that can create properties not found in naturally occurring materials, such as changing the direction of forces, creating negative stiffness, or altering vibration and impact properties. In the case of wood pile metamaterials that are easy to manufacture and have excellent performance in reducing vibration and shock in the vertical direction, basic research on variables affecting shock transmission is needed to reduce shock. Although research on impact reduction according to geometrical factors is being conducted recently, studies on the effect of material variables on impact reduction are insufficient. In this paper, finite element analysis was carried out by variablizing the geometrical properties (lamination angle, diameter, length) and material properties (modulus of elasticity, specific gravity, Poisson's ratio) of wood pile cylinders. Through finite element analysis, the shape of the wooden pile cylinder delivering impact was confirmed, and the effect of each variable on the reduction of impact force and energy was considered through main effect diagram analysis, and frequency band analysis was performed through fast Fourier transform. proceeded In order to reduce the impact force and vibration, it was found that the variables affecting the contact area of t he cylinder have a significant effect.

SPIF-A: on the development of a new concept of incremental forming machine

  • Alves de Sousa, R.J.;Ferreira, J.A.F.;Sa de Farias, J.B.;Torrao, J.N.D.;Afonso, D.G.;Martins, M.A.B.E.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.645-660
    • /
    • 2014
  • This paper presents the design and project of an innovative concept for a Single Point Incremental Forming (SPIF) Machine. Nowadays, equipment currently available for conducting SPIF result mostly from the adaptation of conventional CNC machine tools that results in a limited range of applications in terms of materials and geometries. There is also a limited market supply of equipment dedicated to Incremental Sheet Forming (ISF), that are costly considering low batches, making it unattractive for industry. Other factors impairing a quicker spread of SPIF are large forming times and poor geometrical accuracy of parts. The following sections will depict the development of a new equipment, designed to overcome some of the limitations of machines currently used, allowing the development of a sounding basis for further studies on the particular features of this process. The equipment here described possesses six-degrees-of freedom for the tool, for the sake of improved flexibility in terms of achievable tool-paths and an extra stiffness provided by a parallel kinematics scheme. A brief state of the art about the existing SPIF machines is provided to support the project's guidelines.

Basic and Mechanical Properties by Film Type to Minimize the Sound Pressure Level of PTFE Laminated Vapor-permeable Water-repellent Fabrics (PTFE(Polytetrafluoroethylene) 라미네이팅 투습발수직물의 총음압 최소화를 위한 필름 타입 별 기본 특성과 역학 특성)

  • Lee, Kyu-Lin;Lee, Jee-Hyun;Jin, Eun-Jung;Yang, Youn-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.641-647
    • /
    • 2012
  • This study investigates the sound properties of fabric frictional sound (SPL, ${\Delta}L$, ${\Delta}f$) according to the film type of PTFE laminated vapor-permeable water-repellent fabrics in order to understand the relationship between SPL and the basic properties of fabrics such as layer, yarn type, and thickness of fiber. This study accesses their mechanical properties and determines how to control them to minimize SPL. Eight PTFE laminated water-repellent fabrics, composed of four different film types (A, B, C, D) and with two different fabrics, were used as test specimens. Frictional sounds generated at 1.21m/s were recorded by using a fabric sound generator and SPLs were analyzed through Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured by KES-FB. The SPL value was lowest at 74.4dB in film type A and highest as 85.5dB in type D. Based on ANOVA and post-hoc test, specimens were classified into less Loud Group (A, B) and Loud Group (C, D). It was shown that SPL was lower when 2 layer (instead of 3 layer), filament yarn than staple, and thin fiber than thick were used. In Group I, shearing properties (G, 2HG5), geometrical roughness (SMD), compressional properties (LC, RC) and weight (W) showed high correlation with SPL however, elongation (EM) and shear stiffness (G) did with SPL in Group II.

Behavior of improved through-diaphragm connection to square tubular column under tensile loading

  • Qin, Ying;Zhang, Jing-Chen;Shi, Peng;Chen, Yi-Fu;Xu, Yao-Han;Shi, Zuo-Zheng
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.475-483
    • /
    • 2018
  • Square tubular columns are commonly used in moment resisting frames, while through-diaphragm connection is the most typical configuration detail to connect the H-shaped beam to the column. However, brittle fracture normally occurs at the complete joint penetration weld between the beam flange and the through-diaphragm due to the stress concentration caused by the geometrical discontinuity. Accordingly, three improved types of through-diaphragm are presented in this paper to provide smooth force flow path comparing to that of conventional connections. Tensile tests were conducted on four specimens and the results were analyzed in terms of failure modes, load-displacement response, yield and ultimate capacity, and initial stiffness. Furthermore, strain distributions on the through-diaphragm, the beam flange plate, and the column face were comprehensively evaluated and discussed. It was found that all the proposed three types of improved through-diaphragm connections were able to reduce the stress concentration in the welds between the beam flange and the through-diaphragm. Furthermore, the stress distribution in connection with longer tapered through-diaphragm was more uniform.

Material and Geometrical Noninear Analysis of Reinforced Concrete Columns under Cyclic Loading (반복하중을 받는 철근콘크리트 기둥부재의 재료 및 기하적인 비선형 해석)

  • 김운학
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.55-66
    • /
    • 1999
  • This paper presents an analytical prediction of the hysteresis behavior of reinforced concrete long column with rectangular section under the cyclic loading state. The mechanical characteristic of cracked concrete and reinforcing bar in concrete has been modeled, considering the bond effect between reinforcing bar and concrete, the effect of aggregate interlocking at crack surface and the stiffness degradation after the crack has taken place. The strength increase of concrete due to the lateral confining reinforcement has been also taken into account to model the confined concrete. The formulation of these models for concrete and reinforcing bar has been based on the smeared crack concept that the stress-strain relationship of reinforced concrete element would be defined using the average values. In addition to the material nonlinear properties, the algorithm for large displacement problem that may give an additional deformation has been formulated using total Lagrangian formulation. The analytically predicted behavior was compared with test result and they showed good agreement in overall behavior.

  • PDF