• 제목/요약/키워드: Geometrical damping

검색결과 54건 처리시간 0.021초

수치해석을 통한 진동감쇠식 맞춤형 암반의 감쇠비 산정 (Estimation of Attenuation Relationship Compatible with Damping Ratio of Rock Mass from Numerical Simulation)

  • 김낙영;류재하;안재광;박두희;손무락;황영철
    • 한국지반공학회논문집
    • /
    • 제31권4호
    • /
    • pp.45-55
    • /
    • 2015
  • 발파에 대한 주변 구조물이나 사면의 안정성은 경험적 진동감쇠식 또는 발파진동 동적 수치해석을 통하여 평가한다. 동적해석을 수행하기 위해서는 발파하중과 지반 감쇠비의 산정이 필요하다. 발파하중에 대해서는 다양한 경험적 방법이 제시되었지만 암반의 감쇠비에 대한 연구는 제한적이며 해석 시 이를 무시하거나 명확한 근거 없이 가정하여 해석에 적용하고 있다. 암반의 감쇠비는 절리의 영향을 크게 받으므로 이를 고려해서 산정해야 한다. 또한, 평면파로 가정할 수 있는 지진파와는 다르게 발파 시에는 구면파가 생성되며 이를 2차원 해석에서 모사하는 경우에는 이의 기하학적 확산을 고려하기 위하여 감쇠비를 조정해야 한다. 본 연구에서는 위의 두 가지 영향이 고려된 2차원 평면변형률 연속체 해석에 적용 가능한 암반의 등가감쇠비를 제안하였다. 이를 위하여 다양한 강성의 암반에 대한 2차원 동적해석을 수행하여 암반의 감쇠비에 따른 진동전파 특성을 분석하였으며 해석결과를 기반으로 진동감쇠식-전단파속도-등가감쇠비와의 상관관계를 규명하였다. 제시된 상관관계는 경험적 진동감쇠식에 상응하는 감쇠비를 산정한 최초의 시도로 중요한 의미가 있으며 동시에 실무에도 쉽게 적용될 수 있는 유용한 방법이다.

In-situ measurement of railway-traffic induced vibrations nearby the liquid-storage tank

  • Goktepe, Fatih;Kuyuk, Huseyin S.;Celebi, Erkan
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.583-589
    • /
    • 2017
  • In this study, result of a field investigation of railway traffic-induced vibrations is provided to examine acceptability levels of ground vibration and to evaluate the serviceability of a liquid-storage tank. Free field attenuation of the amplitudes as a function of distance is derived by six accelerometers and compared with a well-known half-space Bornitz's analytical solution which considers the loss of the amplitude of waves due to geometrical damping and material damping of Rayleigh. Bornitz's solution tends to overlap vertical free field vibration compared with in-situ measured records. The vibrations of the liquid-storage tank were compared with the USA, Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations and with the criteria in DIN 4150-3 German standard. Comparing the thresholds stated in DIN 4150-3, absolute peak particle velocities are within the safe limits, however according to FTA velocity level at the top of the water tank exceeds the allowable limits. Furthermore, it is intended to indicate experimentally the effect of the kinematic interaction caused by the foundation of the structure on the free-field vibrations.

Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory

  • Taherifar, Reza;Zareei, Seyed Alireza;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.99-115
    • /
    • 2020
  • This article deals with the dynamic analysis in pad concrete foundation containing Silica nanoparticles (SiO2) subject to seismic load. In order to control the foundation smartly, a piezoelectric layer covered the foundation. The weight of the building by a column on the foundation is assumed with an external force in the middle of the structure. The foundation is located in soil medium which is modeled by spring elements. The Mori-Tanaka law is utilized for calculating the equivalent mechanical characteristics of the concrete foundation. The Kevin-Voigt model is adopted to take into account the structural damping. The concrete structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The differential quadrature method (DQM) and the Newmark method are applied to obtain the seismic response. The effects of the applied voltage to the smart layer, agglomeration and volume percent of SiO2 nanoparticles, damping of the structure, geometrical parameters and soil medium of the structure are assessed on the dynamic response. It has been demonstrated by the numerical results that by applying a negative voltage, the dynamic deflection is reduced significantly. Moreover, silica nanoparticles reduce the dynamic deflection of the concrete foundation.

Seismic Behavior Investigation of the Corrugated Steel Shear Walls Considering Variations of Corrugation Geometrical Characteristics

  • Farzampour, Alireza;Mansouri, Iman;Hu, Jong Wan
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1297-1305
    • /
    • 2018
  • The corrugated steel plate shear walls have recently been proposed to address the seismic issues associated with simple steel plate shear walls; however, stiffness, strength, and ductility of the corrugated shear walls are significantly affected by varying the corrugation geometry under seismic loading. The present study investigates steel shear walls' models with corrugated or simple infill plates subjected to monotonic and cyclic loads. The performance of the corrugated steel plate is evaluated and then compared to that of the simple steel plates by evaluating the damping ratios and energy dissipation capability. The effect of corrugation profile angle, the existence of an opening, and the corrugation subpanel length are numerically investigated after validation of the finite element modeling methodology. The results demonstrate that incorporating corrugated plates would lead to better seismic damping ratios, specifically in the case of opening existence inside of the infill plate. Specifically, the corrugation angle of $30^{\circ}$ decreases the ultimate strength, while increasing the initial stiffness and ductility. In addition, the subpanel length of 100 mm is found to be able to improve the overall performance of shear wall by providing each subpanel appropriate support for the adjacent subpanel, leading to a sufficient buckling resistance performance.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Dynamic analysis of viscoelastic concrete plates containing nanoparticle subjected to low velocity impact load

  • Luo, Jijun;Lv, Meng;Hou, Suxia;Nasihatgozar, Mohsen;Behshad, Amir
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.369-378
    • /
    • 2022
  • Dynamic study of concrete plates under impact load is presented in this article. The main objective of this work is presenting a mathematical model for the concrete plates under the impact load. The concrete plate is reinforced by carbon nanoparticles which the effective material proprieties are obtained by mixture's rule. Impacts are assumed to occur normally over the top layer of the plate and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the classical plate theory (CPT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure are calculated numerically so that the effects of mass, velocity and height of the impactor, volume percent of nanoparticles, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the volume percent of nanoparticles yields to decreases in the deflection.

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.

MLS 차분법을 활용한 동적 균열전파해석의 Rayleigh 감쇠영향 분석 (A Study of Rayleigh Damping Effect on Dynamic Crack Propagation Analysis using MLS Difference Method)

  • 김경환;이상호;윤영철
    • 한국전산구조공학회논문집
    • /
    • 제29권6호
    • /
    • pp.583-590
    • /
    • 2016
  • 본 논문은 강형식 기반의 MLS 차분법에 Rayleigh 감쇠효과를 적용한 동적균열진전 해석기법을 제시한다. Rayleigh 감쇠 효과가 반영된 동적 평형방정식과 구성방정식을 도출하고, MLS 미분근사식을 이용하여 지배방정식들을 이산화하였다. 평형방정식뿐만 아니라 구성방정식에서도 감쇠효과를 적절하게 고려하여 기존의 무요소 강정식화 기법에서 고려하지 못했던 비례감쇠 알고리즘을 구현하였다. 시간관련 항을 포함한 동적 평형방정식은 중앙차분법(central difference method)을 이용하여 시간적분 하였고, 속도에 대한 차분식을 lagging시켜 이산화 방정식을 간소화시켰다. 균열의 기하학적 특성은 표면력 '0'인 자연경계 조건을 균열면에 놓인 절점들에 부과하여 묘사하였으며, 균열성장으로 인해 해석단계마다 변하는 절점의 생성 및 이동 효과를 계방정식 구성에 반영하였다. 단일균열과 다중균열을 갖는 수치예제를 통해서 제안된 수치기법의 정확성을 검증하였으며, 비례감쇠 효과의 고려가 동적균열진전 해석결과에 미치는 영향을 보였다.

블레이드 디스크의 International Mistuning 최적화 : 감쇠와 커플링효과 (Optimization of Intentional Mistuning for Bladed Disk : Damping and Coupling Effect)

  • 최병근;김원철
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.429-436
    • /
    • 2005
  • 터보기계에서 mistuning은 구조적, 기하학적인 측면에서의 blade와 blade 사이의 미소한 특성차이를 의미하며, blade의 제작과정이나 운전 중 발생하는 마모의 차이에 의해 발생한다고 알려져 있다. Blade사이에서 발생하는 이러한 미소한 차이가 강제 진동 시 아주 큰 국부진동을 야기 시킬 수 있다는 사실이 여러 논문들에 의해 확인되었다. 최근에는 조화패턴의 intentional mistuning 배열을 사용하여 제작 및 사용 중에 발생하는 unintentional mistuning에 의한 blade의 강제진동 응답을 줄일 수 있다는 연구가 발표되었다. 따라서 본 논문에서는 두 가지 형태의 blade(A와 B)를 사용하고, blade감쇠와 coupling 효과를 고려하여 bladed disk의 강제진동응답을 줄일 수 있는 intentional mistuning의 최적배열패턴을 인공지능 알고리즘의 하나인 유전알고리즘과 steepest descent법을 이용하여 구하고자 한다. 그리고 단순 bladed disk와 17-bladed로 된 산업체 로터의 수치예제를 통하여 intentional mistuning 된 bladed disk의 이점을 증명하려고 한다.

무한요소를 사용한 층상지반에 놓인 스트립기초의 진동전파해석 (Wave Propagation Analysis of a Strip Foundation in Layered Soils using Infinite Elements)

  • 윤정방;김두기;김유진;박종찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.202-209
    • /
    • 1996
  • In this paper, two dimensional vertical and comer infinite elements which can include multiple wave components to model underlying half space are developed. These elements are natural and economical to model underlying stiff half space or rock. To verify the behavior of these infinite elements, vertical, horizontal, and rocking compliances of a rigid strip foundation on a viscoelastic soil profile are analyzed and compared with those of Tzong and Penzien who used the boundary solution method. Good agreements are noticed between the two methods. The influence of material properties like Poisson's ratio, material damping, and stiffness ratio of layers as well as the influence of geometrical properties such as layer thicknesses and depth of foundation embedment are studied. Example analysis is carried out for the shaking table which is located in KIMM(Korea Institute of Machinery and Materials), and the vertical and horizontal displacements of the analysis are compared with the measured, and show good results and demonstrate the efficiency of the proposed method.

  • PDF