• Title/Summary/Keyword: Geometrical damping

Search Result 56, Processing Time 0.021 seconds

New three-layer-type hysteretic damper system and its damping capacity

  • Kim, Hyeong Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.821-838
    • /
    • 2012
  • This paper proposes a new three-layer pillar-type hysteretic damper system for residential houses. The proposed vibration control system has braces, upper and lower frames and a damper unit including hysteretic dampers. The proposed vibration control system supplements the weaknesses of the previously proposed post-tensioning vibration control system in the damping efficiency and cumbersomeness of introducing a post-tension. The structural variables employed in the damper design are the stiffness ratio ${\kappa}$, the ductility ratio ${\mu}_a$, and the ratio ${\beta}$ of the damper's shear force to the maximum resistance. The hysteretic dampers are designed so that they exhibit the targeted damping capacity at a specified response amplitude. Element tests of hysteretic dampers are carried out to examine the mechanical property and to compare its restoring-force characteristic with that of the analytical model. Analytical studies using an equivalent linearization method and time-history response analysis are performed to investigate the damping performance of the proposed vibration control system. Free vibration tests using a full-scale model are conducted in order to verify the damping capacity and reliability of the proposed vibration control system. In this paper, the damping capacity of the proposed system is estimated by the logarithmic decrement method for the response amplitudes. The accuracy of the analytical models is evaluated through the comparison of the test results with those of analytical studies.

Clarification about Component Mode Synthesis Methods for Substructures with Physical Flexible Interfaces

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • The objective of the paper is to clarify a methodology based on the use of the existing component mode synthesis methods for the case of two damped substructures which are coupled through a linking viscoelastic flexible substructure and for which the structural modes with free geometrical interface are used for each main substructure. The proposed methodology corresponds to a convenient alternative to the direct use either of the Craig-Bampton method applied to the three substructures (using the fixed geometric interface modes) or of the flexibility residual approaches initiated by MacNeal (using the free geometric interface modes). In opposite to a geometrical interface which is a topological interface on which there is a direct linkage between the degrees of freedom of substructures, we consider a physical flexible interface which exists in certain present technologies and for which the general framework linear viscoelasticity is used and yields a frequency-dependent damping and stiffness matrices of the physical flexible interface.

Dynamic Analysis of a Geometrical Non-linear Plate (기하학적 비선형성을 갖는 평판의 동특성 해석)

  • 임재훈;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.498-503
    • /
    • 2003
  • Dynamic analysis of a plate with non-linearity due to large deformation is performed in the study. There have been many researches about the non-linear dynamic behavior of plates examining by means of theoretical or numerical analyses. But it is important how exactly model the actual system. In this respect, the Continuous-Time system identification technique is used to generate non-linear models, for stiffness and damping terms, to explain the observed behaviors with single mode assumptions for the simplicity after comparing the experimental results with the numerical results of a linear plate model.

  • PDF

A Study on the Dynamic Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 동적 거동 특성에 관한 연구)

  • 한상을;정명채;이진섭;이갑수;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.151-158
    • /
    • 1999
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent very different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study the .earthquake response behavior is verified according to the factor of each shape, rise/span ratio, ana damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

A Study on the Buckling Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 좌굴 거동 특성에 관한 연구)

  • 한상을;유용주;이상주;이경수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-496
    • /
    • 1998
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent ye different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study, the earthquake response behavior is verified according to the factor of each shape, rise/span ratio, and damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

Design and Evaluation of Noise Suppressing Hydrophone

  • Im, Jong-in
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.546-560
    • /
    • 2000
  • This paper describes the design and evaluation of a noise suppressing hydrophone that is robust to external noise without sacrificing its performance as a receiver. To increase robustness of the receiver to the external noise, first, effects of location of external noise on its performance are analyzed with the finite element method (FEM). Based on the results, geometrical variations are implemented on the structure with additional air pockets and damping layers that work as acoustic shields or scatterers of the noise, and fourteen trial models are developed for the noise suppressing hydrophone structures. The results show that the effect of the external noise is most significant when it is applied to near the mid-side surface of the hydrophone housing. The external noise is isolated most efficiently when two thin damping layers combined with five air pockets are inserted to the circumference of the hydrophone housing. Overall, of the fourteen structural variations of the hydrophone, the best one shows about 87% reduction in the response of the original structure to external noise.

  • PDF

Finite Difference Analysis of Dynamic Characteristics of Negative Pressure Rectangular Porous Gas Bearings (음압 직각 다공질 공기베어링의 동특성에 관한 유한차분 해석)

  • Hwang Pyung;Khan Polina;Lee Chun-Moo;Kim Eun-Hyo
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • The numerical analysis of the negative pressure porous gas bearings is presented. The pressure distribution is calculated using the finite difference method. The Reynolds equation and Darcy's equation are solved simultaneously. The air bearing stiffness and damping are evaluated using the perturbation method. Rectangular uniform grid is employed to model the bearing. The vacuum preloading is considered. The pressure in the vacuum pocket is assumed to be a constant negative pressure. The total load, stiffness, damping and flow rate are calculated fur several geometrical configurations and several values of negative pressure. It is found that too large vacuum pocket can result in negative total force.

Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.509-519
    • /
    • 2019
  • In this paper, an analytical approach for the free vibration analysis of spiral stiffened functionally graded (SSFG) cylindrical shells is investigated. The SSFG shell is resting on linear and non-linear elastic foundation with damping force. The elastic foundation for the linear model is according to Winkler and Pasternak parameters and for the non-linear model, one cubic term is added. The material constitutive of the stiffeners is continuously changed through the thickness. Using the Galerkin method based on the von $K\acute{a}rm\acute{a}n$ equations and the smeared stiffeners technique, the non-linear vibration problem has been solved. The effects of different geometrical and material parameters on the free vibration response of SSFG cylindrical shells are adopted. The results show that the angles of stiffeners and elastic foundation parameters strongly effect on the natural frequencies of the SSFG cylindrical shell.

Critical Velocity of Fluidelastic Vibration in a Nuclear Fuel Bundle

  • Kim, Sang-Nyung;Jung, Sung-Yup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.816-822
    • /
    • 2000
  • In the core of the nuclear power plant of PWR, several cases of fuel failure by unknown causes have been experienced for various fuel types. From the common features of the failure pattern, failure lead time, flow conditions, and flow induced vibration characteristics in nuclear fuel bundles, it is deduced that the fretting wear failure of the fuel rod at the spacer grid position is due to the fluidelastic vibration. In the past, fluidelastic vibration was simulated by quasi -static semi-analytical model, so called the static model, which could not account for the interaction between the rods within a bundle. To overcome this defect and to provide for more flexibilities applicable to the fuel bundle, Tanaka's unsteady model was modified to accomodate the geometrical differences and governing parameter changes during the operations such as the number of rods, pitch to diameter ratio (P/D), spring force, damping coefficient, etc. The critical velocity was calculated by solving the governing equations with the MATLAB code. A comparison between the estimated critical velocity and the test result shows a good agreement. Finally, the level of decrease of the critical velocity due to the reduction in the spring force and reduced damping coefficient due to the radiation exposure is also estimated.

  • PDF

Analysis of the Vibration Damping of a Single Lap Joint Beam with Partial Dampers (겹침이음부와 부분층댐퍼가 부착된 보의 진동감쇠해석)

  • 박정일;최낙삼
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.26-35
    • /
    • 1999
  • This paper presents the vibration damping characteristic of a single lap joint beam with partial dampers analyzed using the model strain energy method and the harmonic response analysis which were based on a finite element model. The two finite element analysis methods exhibited very similar results of the resonant frequency and system loss factor which were comparable to those by the theoretical analysis. Effects of the location of partial dampers and elastic moduli and thickness of their layers on the system loss factor were studied. The damping effects due to changes of modules and loss factor of the viscoelastic layer in lap joint and partial dampers were also studied. Consequently, the geometrical and material conditions at maximizing the system loss factor were suggested.

  • PDF