• Title/Summary/Keyword: Geometrical Shape

Search Result 513, Processing Time 0.024 seconds

Facial Feature Extraction using Nasal Masks from 3D Face Image (코 형상 마스크를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • This paper proposes a new method for facial feature extraction, and the method could be used to normalize face images for 3D face recognition. 3D images are much less sensitive than intensity images at a source of illumination, so it is possible to recognize people individually. But input face images may have variable poses such as rotating, Panning, and tilting. If these variances ire not considered, incorrect features could be extracted. And then, face recognition system result in bad matching. So it is necessary to normalize an input image in size and orientation. It is general to use geometrical facial features such as nose, eyes, and mouth in face image normalization steps. In particular, nose is the most prominent feature in 3D face image. So this paper describes a nose feature extraction method using 3D nasal masks that are similar to real nasal shape.

Measurement of Variation in Water Equivalent Path Length by Respiratory Organ Movement

  • Minohara, Shinichi;Kanai, Tatsuaki;Endo, Masahiro;Kato, Hirotoshi;Miyamoto, Tadaaki;Tsujii, Hirohiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.90-93
    • /
    • 2002
  • In particle radiotherapy, a shape of the beam to conform the irradiation field is statically defined by the compensator, collimator and potal devices at the outside of the patient body. However the target such as lung or liver cancer moves along with respiration. This increases the irradiated volume of normal tissue. Prior discussions about organ motions along with respiration have been mainly focused on inferior-superior movement that was usually perpendicular to beam axis. On the other hand, the change of the target depth along the beam axis is very important especially in particle radiotherapy, because the range end of beam (Bragg peak) is so sharp as to be matched to distal edge of the target. In treatment planning, the range of the particle beam inside the body is calculated using a calibration curve relating CT number and water equivalent path length (WEL) to correct the inhomogeneities of tissues. The variation in CT number along the beam path would cause the uncertainties of range calculation at treatment planning for particle radiotherapy. To estimate the uncertainties of the range calculation associated with patient breathing, we proposed the method using sequential CT images with respiration waveform, and analyzed organ motions and WELs at patients that had lung or liver cancer. The variation of the depth along the beam path was presented in WEL rather than geometrical length. In analyzed cases, WELs around the diaphragm were remarkably changed depending on the respiration, and the magnitude of these WEL variations was almost comparable to inferior-superior movement of diaphragm. The variation of WEL around the lung was influenced by heartbeat.

  • PDF

Characteristic Analysis of Particulate Composites According to a Random Microstructure (랜덤 미세구조에 따른 입자 복합재료의 특성분석)

  • Park, Cheon;Kang, Young-Jin;Noh, Yoojeong;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • Since shape, size and distribution of particles in particulate composites have spreaded characteristics, properties of particulate composites have variation and also system behavior using particulate composites have variation. However, it is difficult to consider spreaded characteristic of particles so that a system behavior is analysed using homogeneous techniques or using microstructure in local areas. In this study, for considering random variation of particles, RMDFs(random morphology description functions) are used to generate random microstructure and relationship between the number of gaussian functions and spreaded characteristic of particles was analysed using the geometrical moment of area. Also, multi-scale analysis was carried out for cantilever beam with full-random microstructure to study behavior of particulate composites structure. As a result, it is defined that spreaded characteristic of particles and the variation of deflections of cantilever beam are decreased as the number of Gaussian functions(N) is increased and converges at N=200.

The Study about the Fatigue Strength Improvement Mechanism by the Processing of Fillet Welded Joint (필렛용접이음부의 후처리에 따른 피로강도 향상 메커니즘의 연구)

  • Lim, Cheong Kweon;Park, Moon Ho;Chang, Chun Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.319-327
    • /
    • 1999
  • This study makes mechanism of the fatigue strength improvement by the processing of weld toe clear for the vertical cross rib specimens which was made fillet weld joint, also it proposes to the appropriate later processing. As a result of tension fatigue test, the fatigue strength improvement could have been seen in later processed specimens than as-weld specimens. Especially fatigue crack initial life $N_c$ increased in specimens which processed grinder after hammer-peening. Also, fatigue crack propagation life $N_p$ improved more in hammer-peening specimens than as-weld or TIG specimens. It thinks that $N_c$ is because of the geometrical shape of weld toe, i.e. the relaxation of the stress concentration and also that $N_p$ is because the big compression residual stress which was introduced in the surface by hammer-peening is restraining the propagation of fatigue crack.

  • PDF

Numerical Study on Failure Mechanism of Tunnel Shotcrete Lining (터널 숏크리트 라이닝 파괴 메커니즘에 대한 수치해석적 고찰)

  • Shin, Hyusoung;Shin, Dongin;Bae, Gyujin;Kim, Donggyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.167-177
    • /
    • 2009
  • This study investigates a failure mechanism of a tunnel shotcrete lining with respect to a concentrated load due to blocky rock mass. First of all, it is carried out to survey relevant researches to shotcrete failures by literature reviews and to numerically re-investigate the failure modes of shotcrete lining given by previous researches. Through this study, the failure modes are relocated with the conditions which induce each failure mode newly proposed by this study. In addition to this, the arching shape of tunnel lining, which has not been considered in the previous research despite of inherent geometrical characteristics in tunnels, is taken into consideration in numerical investigation on lining failure in this study. As a result, it is shown that more simplified failure modes can be found on the tunnel boundary condition and the corresponding failure condition to each mode can be different from ones of the previous study due to a tunnel arching effect.

  • PDF

Face classification and analysis based on geometrical feature of face (얼굴의 기하학적 특징정보 기반의 얼굴 특징자 분류 및 해석 시스템)

  • Jeong, Kwang-Min;Kim, Jung-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1495-1504
    • /
    • 2012
  • This paper proposes an algorithm to classify and analyze facial features such as eyebrow, eye, mouth and chin based on the geometric features of the face. As a preprocessing process to classify and analyze the facial features, the algorithm extracts the facial features such as eyebrow, eye, nose, mouth and chin. From the extracted facial features, it detects the shape and form information and the ratio of distance between the features and formulated them to evaluation functions to classify 12 eyebrows types, 3 eyes types, 9 mouth types and 4 chine types. Using these facial features, it analyzes a face. The face analysis algorithm contains the information about pixel distribution and gradient of each feature. In other words, the algorithm analyzes a face by comparing such information about the features.

An Estimation of Discharge Coefficient Considering the Geometrical Shape of Broad Crested Side Weir (광정횡월류위어의 기하학적 형상을 고려한 유량계수 산정)

  • Cho, Hong-Je;Kang, Ho-Seon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.955-965
    • /
    • 2011
  • The flow characteristics of rectangular and 1 : 1 and 1 : 2 trapezoidal weirs were investigated through hydraulic experiments in order calculate the exact overflow discharge of the broad-crested side weir. The flow was found to be most stable in trapezoidal shapes with the lowest incline. The 1 : 1 and 1 : 2 trapezoidal weirs had 5.67% and 8.57% increases, respectively, compared to the rectangular weir in terms of overflow amount, which suggests that they are more effective in preventing flood. An integrated discharge coefficient equation taking into account the discharge coefficient equation and shapes was proposed through a multiple linear regression analysis with an addition of a new parameter for the side wear, $L/L_H$, to the conventional discharge coefficient equation. Also, the applicability of the newly proposed discharge coefficient equation was reviewed by comparing the measured and calculated overflow amounts based on the experimental data of preceding researches and existing researchers and the research data of this study.

Numerical Modeling of Regenerative Rotary Heat Exchanger: A Review

  • Baruah, Netramoni;Prasanna, Kumar G.V.
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.44-55
    • /
    • 2017
  • Background: Heat recovery is one of the prominent ways to save a considerable amount of conventional fossil fuel and minimize its adverse effects on the environment. The rotary heat exchanger is one of the most effective and efficient devices for heat recovery or heat exchanging purposes. It is a regenerative type of heat exchanger, which has been studied and used for many heat recovery purposes. However, regenerative thermal wheels have been mostly used as heat recovery systems in buildings. For modeling a rotary regenerator, it is very important to numerically consider all the factors involved, such as effectiveness, rotational speed, geometrical size and shape, and pressure drop (${\Delta}p$). In recent times, several researchers have actively studied the rotary heat exchangers, both theoretically and experimentally. Reviews: In this paper different advances in the numerical modeling of regenerative rotary heat exchangers in relation to fluid flow and heat transfer have been discussed. Researchers have indicated that the effectiveness of the regenerative rotary heat exchanger depends on various factors including, among many others, rotational speed, rotational period and combustion power. It is reported that with the increase of periodic rotation the deviation of theoretical results from the experimental result increases. The available literature indicates that regenerative heat exchangers are having relatively more effectiveness (60-80%), compared to other heat exchangers. It is also observed that the finite difference method and finite volume methods are mostly used for discretizing the heat transfer governing equations, under some assumptions. Research also indicates that for the effectiveness calculation the ${\varepsilon}-NTU$ method is the most popular and convenient.

Modeling Scheme for Weld-Jointed Parts for Precise Structural Analysis of Large-Scale Structures (대형구조물의 구조해석 정밀도 향상을 위한 용접부 모델링 기법)

  • Jin, Dawei;Park, Sang-Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1195-1203
    • /
    • 2012
  • Welding is a well-developed, widely used process for permanently joining metal components. However, the mechanical reliability of welded parts still offers room for improvement. A weld region consists of a fusion zone, a partially melted zone, and a heat-affected zone, and each zone has different material properties. In addition, the geometrical shape of a weld bead or fillet influences the mechanical reliability. A precise structural analysis must consider how a local welded region influences the mechanical behavior of the entire structure. This study focuses on an effective modeling scheme for the weld region. It relies on experimental and numerical methods to determine the proper correlation based on experimental results and to propose a modeling scheme for welded parts.

Capacity of RC Concrete Column with Holes (Rc 유공 콘크리트 기둥의 내력에 관한 실험적 연구)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.92-95
    • /
    • 2006
  • This study is to find out how column with hole is behaved, compared to the normal one without hole. There might be existing buildings to make holes in the reinforced concrete column. Columns are made with commercially used compressive strength $240kg/cm^{2}$, air amount 5.0%, using re-bar of diameter D13 and D10 having yielding stress $4,000kg/cm^{2}$. The specimen were cured with temperature of $21{\pm}3^{\circ}C$. All specimens of five variables and all holes are geometrically considered and configurated. D3, D5 mean diameter 3cm and 5cm respectively. H1, H2 are the number of holes. Compressive pressure was forced in accordance with KS, following $0.6{\pm}0.4N/mm^{2}$ speed. Main re-bar's were strained with almost same shape through all the specimens. Hole diameter 5cm-having specimen showed cracking around hole. strains of back and front gauges of the specimen were showed similarly. Specimen having two holes in left and right from longitudinally axis resisted 7% less than the one having hole centrically from longitudinal axis. One hole having specimen with diameter 5cm resisted only 3% less than in case of 3cm diameter hole. Hole having in left and right from longitudinal axis will be less resistant than the case longitudinally arranged. Diameter 3cm hole showed less 10% capacity than normal one without hole. Capacity loss difference between diameter 3cm and 5cm showed almost none in case that they are arranged longitudinally.