• 제목/요약/키워드: Geometrical Nonlinear

검색결과 317건 처리시간 0.028초

Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution

  • Shokravi, Maryam;Jalili, Nader
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.381-395
    • /
    • 2017
  • Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. Employing first order shear deformation theory (FSDT), the motion equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be increases.

Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles

  • Zamanian, Mohammad;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • 제24권1호
    • /
    • pp.43-57
    • /
    • 2017
  • The use of nanotechnology materials and applications in the construction industry should be considered for enhancing material properties. However, the nonlinear buckling of an embedded straight concrete columns reinforced with silicon dioxide ($SiO_2$) nanoparticles is investigated in the present study. The column is simulated mathematically with Euler-Bernoulli and Timoshenko beam models. Agglomeration effects and the characteristics of the equivalent composite are determined using Mori-Tanaka approach. The foundation around the column is simulated with spring and shear layer. The governing equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of $SiO_2$ nanoparticles, geometrical parameters and agglomeration on the buckling of column are investigated. Numerical results indicate that considering agglomeration effects leads to decrease in buckling load of structure.

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

탄성 현수선 요소를 이용한 케이블 구조물의 비선형 동적해석 (Non-linear Dynamic Analysis of Cable Structures Using Elastic Catenary)

  • 황진홍;이상주;한상을
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.167-172
    • /
    • 2005
  • In the dynamic analysis of cable structures, geometrical non-linearity due to the flexibility of cables must be considered efficiently. In this paper, formulation of tangent stiffness matrix of elastic catenary cable is derived by using relative nodal displacements, self-weight and unstressed cable length. Free vibration analysis of simply supported cable using elastic catenary cable elements is conducted and compared with that using truss elements. The result shows that elastic catenary cable elements are more compatible than truss elements in the case of analysis of cable structures. Furthermore, the characteristic of dynamic behaviors of cable structures by temporary unstability phenomenon is confirmed.

  • PDF

다공판 시스템의 흡음성능에 유동이 미치는 영향 (The effect of the flow on the absorption performance of a perforated plate system)

  • 허성욱;제현수;양수영;이동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.879-884
    • /
    • 2003
  • This paper is to experimentally investigate the effect of the through-flow and grazing-flow on the absorption performance of a perforated plate system. The experiment is performed through the systematic change of the through-flow velocity, grazing-flow velocity, incident sound pressure level, and the geometrical parameters such as the porosity and hole diameter. From the experimental results, it is found that for the nonlinear relationship between the acoustic resistance and incident sound pressure level there is no influence of the through-flow on the absorption performance, but fur the linear relationship between them there is a strong dependence of the absorption performance on the through-flow velocity. It is also shown that the absorption performance is controllable by changing the porosity and hole-diameter in size.

  • PDF

FORMATION OF INTERMEDIATE-SCALE STRUCTURES IN SPIRAL GALAXIES

  • KIM WOONG-TAE
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.243-248
    • /
    • 2004
  • Disk galaxies abound with intermediate-scale structures such as OB star complexes, giant clouds, and dust spurs in a close geometrical association with spiral arms. Various mechanisms have been proposed as candidates for their origin, but a comprehensive theory should encompass fundamental physical agents such as self-gravity, magnetic fields, galactic differential rotation, and spiral arms, all of which are known to exist in disk galaxies. Recent numerical simulations incorporating all these physical processes show that magneto-Jeans instability (MJI), in which magnetic tension resists the stabilizing Coriolis force of galaxy rotation, is much more powerful than swing-amplification or the Parker instability in forming self-gravitating intermediate-scale structures. The MJI occurring in shearing and expanding flows off spiral arms rapidly forms structures elongated along the direction perpendicular to the arms, remarkably similar to dust spurs seen in HST images of spiral galaxies. In highly nonlinear stages, these spurs fragment to form bound clumps, possibly evolving into bright arm and interarm H II regions, suggesting that all these intermediate-scale structures in spiral galaxies probably share a common dynamical origin.

Visual Basic을 이용한 강뼈대 구조물의 비선형 해석 (Nonlinear Analysis of Steel Frames Using Visual Basic)

  • 윤영조;김선희;이종석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.403-410
    • /
    • 1999
  • General1y, H-section is used for columns and beams in the middle and low steel building, But it has a strong and weak axis. Thus if H-section is used for columns, the structure needs reinforcement on the weak axis. Therefore recently, square holler section(S.H.S) is used for columns because it is able to coiler the vulnerability of H-section. Structural analysis is usually executed under the assumption that connections are either ideally pinned joint or fully rigid joint. Actually all connections are semi-rigid which possess a rotational stiffness. Therefore it can be designed economically as using the property of connections which has a rotational stiffness. This paper presents a prediction model curve which is fitted Kishi-Chen power Model about the behavior of connection between H-beam and S.H.S column. Non-linear analysis program was considered the non-linearity of semi-rigid connection and the geometrical non-linearity under the effect of axial force. It was programed by FORTRAN90 and Visual Basic.

  • PDF

내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계 (Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints)

  • 조현만;류연선;이현진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF

다공판 시스템의 흡음성능에 관통유동이 미치는 효과 (Effect of the through-flow on the absorption performance of a perforated plate system)

  • 허성욱;이동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.163-167
    • /
    • 2003
  • This paper is to experimentally investigate the effect of the through-flow on the absorption performance of a perforated plate system. The experiment is performed through the systematic change of the through-flow velocity, incident sound pressure level, and the geometrical parameters such as the porosity and hole diameter. From the experimental results, it is found that fur the nonlinear relationship between the acoustic resistance and incident sound pressure level there is no influence of the through-flow on the absorption performance, but for the linear relationship between them there is a strong dependence of the absorption performance on the through-flow velocity. It is also shown that the absorption performance is controllable by changing the porosity and hole-diameter in size.

  • PDF

Trajectory Controller Design of Mobile Robot based on Back-stepping Procedure

  • Jaewon Kho;Lee, Kicheol;Park, Mignon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1618-1621
    • /
    • 2002
  • In this paper, the constructive modeling procedure of nonholonomic mobile robot system is carried out with the help of controllability Lie algebra used in differential geometry field, and their geometrical properties are also analyzed. And, a new trajectory controller is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation the trajectory controller is applied to differentially driven mobile robot system on the assumption that the trajectory planner be given.

  • PDF