• Title/Summary/Keyword: Geometric phase analysis

Search Result 88, Processing Time 0.027 seconds

Effects of Blade Configuration on the Performance of Induced Gas Flotation Machine (익형 변화에 따른 유도공기부상기 성능특성 연구)

  • Song, You-Joon;Lee, Ji-Gu;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.41-46
    • /
    • 2017
  • The flotation performance of the induced gas flotation (IGF) machine is considerably influenced by geometric configurations of rotor and stator. The interaction of rotor and stator, which are the most important components in IGF, serves to mix the air bubbles. Thus, the understanding of flow characteristics and consequential analysis on the machine are essential for the optimal design of IGF. In this study, two-phase (water and air) flow characteristics in the forced-air mechanically stirred Dorr-Oliver flotation cell was investigated using ANSYS CFX. In addition, the void fraction and the velocity distributions are determined and presented with different blade configurations.

Design of HDD Load/Unload Suspension Using Shape Memory Alloy (형상기억합금을 이용한 HDD Load/Unload 서스펜션의 설계)

  • Lim, Soo-Cheol;Park, Young-Pil;Park, No-Cheol;Choi, Seung-Bok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 2006
  • In this work, we propose a new type of HDD Load/Unload(L/UL) suspension featuring shape memory alloy(SMA). The mechanical and thermal properties of the SMA film with respect to the material phase states are experimentally estimated and the SMA film is carefully integrated to the suspension. In order to obtain the desirable dynamic characteristics of the suspension during L/UL process, the design parameters of the SMA film such as geometric properties are determined by considering the vibration modes of the suspension related to the L/UL performance. After analyzing the modal characteristics of the proposed suspension, L/UL performance is evaluated through L/UL simulation by observing the vibration motion and minimum flying height of the slider during L/UL process.

  • PDF

Nonlinear Dynamic Analysis of Space Truss by Using Multistage Homotopy Perturbation Method (시분할구간 호모토피 섭동법을 이용한 공간 트러스의 비선형 동적 해석)

  • Shon, Su-Deok;Ha, Jun-Hong;Lee, Seung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.879-888
    • /
    • 2012
  • This study aims to apply multistage homotopy perturbation method(MHPM) to space truss composed of discrete members to obtain a semi-analytical solution. For the purpose of this research, a nonlinear governing equation of the structures is formulated in consideration of geometrical nonlinearity, and homotopy equation is derived. The result of carrying out dynamic analysis on a simple model is compared to a numerical method of 4th order Runge-Kutta method(RK4), and the dynamic response by MHPM concurs with the numerical result. Besides, the displacement response and attractor in the phase space is able to delineate dynamic snapping properties under step excitations and the responses of damped system are reflected well the reduction effect of the displacement.

Biomechanical Analysis of Wearing Carbon Nanotube-Based Insole during Drop Landing (탄소나노튜브 인솔 착용에 따른 드롭 착지 동작의 생체역학적 분석)

  • Chae, Woen-Sik;Jung, Jae-Hu;Lee, Haeng-Seob
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.429-435
    • /
    • 2012
  • The purpose of this study was to determine the biomechanical effect of wearing carbon nanotube-based insole on cushioning and muscle tuning during drop landing. Twenty male university students(age: $21.2{\pm}1.5yrs$, height: $175.4{\pm}4.7cm$, weight: $70.2{\pm}5.8kg$) who have no musculoskeletal disorder were recruited as the subjects. Average axial strain, average shear strain, inversion angle, linear velocity, angular velocity, vertical GRF and loading rate were determined for each trial. For each dependent variable, a one-way analysis of variance(ANOVA) with repeated measures was performed to test if significant difference existed among different three conditions(p<.05). The results showed that Average axial strain of line 4 was significantly less in CNT compared with EVA and PU during IP phase. The average shear strain was less in CNT compared with EVA and PU during other phases. The inversion angle was increased in CNT compared with EVA and PU during all phase. In linear velocity, angular velocity, vertical GRF and loading rate, there were no significant difference between the three groups. This result seems that fine particle of carbon nanotube couldn't make geometric form which can absolve impact force by increasing density through eliminating voids of forms. Thus, searching for methods that keep voids of forms may play a pivotal role in developing of insole. This has led to suggestions of the need for further biomechanical analysis to these factors.

Quantitative analysis of the errors associated with orbit uncertainty for FORMOSAT-3

  • Wu Bor-Han;Fu Ching-Lung;Liou Yuei-An;Chen Way-Jin;Pan Hsu-Pin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.87-90
    • /
    • 2005
  • The FORMOSAT-3/COSMIC mission is a micro satellite mission to deploy a constellation of six micro satellites at low Earth orbits. The final mission orbit is of an altitude of 750-800 lan. It is a collaborative Taiwan-USA science experiment. Each satellite consists of three science payloads in which the GPS occultation experiment (GOX) payload will collect the GPS signals for the studies of meteorology, climate, space weather, and geodesy. The GOX onboard FORMOSAT -3 is designed as a GPS receiver with 4 antennas. The fore and aft limb antennas are installed on the front and back sides, respectively, and as well as the two precise orbit determination (POD) antennas. The precise orbit information is needed for both the occultation inversion and geodetic research. However, the instrument associated errors, such as the antenna phase center offset and even the different cable delay due to the geometric configuration of fore- and aft-positions of the POD antennas produce error on the orbit. Thus, the focus of this study is to investigate the impact of POD antenna parameter on the determination of precise satellite orbit. Furthermore, the effect of the accuracy of the determined satellite orbit on the retrieved atmospheric and ionospheric parameters is also examined. The CHAMP data, the FORMOSAT-3 satellite and orbit parameters, the Bernese 5.0 software, and the occultation data processing system are used in this work. The results show that 8 cm error on the POD antenna phase center can result in ~8 cm bias on the determined orbit and subsequently cause 0.2 K deviation on the retrieved atmospheric temperature at altitudes above 10 lan.

  • PDF

Error analysis and performance test of the volumetric interferometer for three dimensional coordinate measurements (삼차원 좌표 측정을 위한 부피 간섭계의 오차분석 및 성능평가)

  • 이혁교;주지영;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.521-529
    • /
    • 2002
  • We have recently proposed the new concept of a phase-measuring volumetric interferometer that enables us to accurately measure the xyz-coordinates of the probe without metrology frames. The interferometer is composed of a movable target and a fixed photo-detector array. The target is made of point diffraction sources to emit two spherical wavefronts, whose interference is monitored by an array of photo-detectors. Phase shifting is applied to obtain the precise phase values of the photo-detectors. Then the measured phases are fitted to a geometric model of multilateration so as to determine the xyz-location of the target by minimizing least square errors. The proposed interferometer has been designed and built with a volumetric uncertainty of less than 1.0 $\mu\textrm{m}$ within a cubic working volume of side 120 mm. Here, in this paper, we also present error sources, an evaluated uncertainty, and test results from the prototype system. The self-calibration of two-dimensional precision metrology stages is applied to test the performance of the interferometer.

Unsteady Analysis of the Conduction-Dominated Three-Dimensional Close-Contact Melting (열전도가 주도적인 삼차원 접촉융해에 대한 비정상 해석)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.945-956
    • /
    • 1999
  • This work reports a set of approximate analytical solutions describing the initial transient process of close-contact melting between a rectangular parallelepiped solid and a flat plate on which either constant temperature or constant heat flux is imposed. Not only relative motion of the solid block tangential to the heating plate, but also the density difference between the solid and liquid phase is incorporated in the model. The thin film approximation reduces the force balance between the solid weight and liquid pressure, and the energy balance at the melting front into a simultaneous ordinary differential equation system. The normalized model equations admit compactly expressed analytical solutions which include the already approved two-dimensional solutions as a subset. In particular, the normalized liquid film thickness is independent of all pertinent parameters, thereby facilitating to define the transition period of close-contact melting. A unique behavior of the solid descending velocity due to the density difference is also resolved by the present solution. A new geometric function which alone represents the three-dimensional effect is introduced, and its properties are clarified. One of the representative results is that heat transfer is at least enhanced at the expense of the increase in friction as the cross-sectional shape deviates from the square under the same contact area.

Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation

  • Shafiei, Hamed;Setoodeh, Ali Reza
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The purpose of this research is to study the nonlinear free vibration and post-buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) beams resting on a nonlinear elastic foundation. Uniformly and functionally graded distributions of single walled carbon nanotubes as reinforcing phase are considered in the polymeric matrix. The modified form of rule of mixture is used to estimate the material properties of CNTRC beams. The governing equations are derived employing Euler-Bernoulli beam theory along with energy method and Hamilton's principle. Applying von $K\acute{a}rm\acute{a}n's$ strain-displacement assumptions, the geometric nonlinearity is taken into consideration. The developed governing equations with quadratic and cubic nonlinearities are solved using variational iteration method (VIM) and the analytical expressions and numerical results are obtained for vibration and stability analysis of nanocomposite beams. The presented comparative results are indicative for the reliability, accuracy and fast convergence rate of the solution. Eventually, the effects of different parameters, such as foundation stiffness, volume fraction and distributions of carbon nanotubes, slenderness ratio, vibration amplitude, coefficients of elastic foundation and boundary conditions on the nonlinear frequencies, vibration response and post-buckling loads of FG-CNTRC beams are examined. The developed analytical solution provides direct insight into parametric studies of particular parameters of the problem.

Design Optimization of Centrifugal Pumps (원심 펌프의 최적 설계)

  • Oh, Hyoung Woo;Chung, Myung Kyoon;Kim, Sang Chul;Yang, Keun Yung;Ha, Jin Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.254-261
    • /
    • 1999
  • An optimal design code for centrifugal pumps has been developed to determine geometric and fluid dynamic variables under appropriate design constraints. The optimization problem has been formulated with a nonlinear objective function to minimize one, two or all of the fluid dynamic losses, the net positive suction head required and the product price of a pump stage depending on the weighting factors selected as the design compromise. The optimal solution Is obtained by means of the Hooke and Jeeves direct search method. The performance analysis Is based on the mean streamline analysis using the present state-of-the-art loss correlations. The optimized efficiency and design variables of centrifugal pumps are presented in this paper as a function of non-dimensional specific speed in the range, $0.5{\leq}N$, ${\leq}1.3$. The diagrams presented herein can be used efficiently in the preliminary design phase of centrifugal pumps.

Mechanical and Forming Characteristics of High-Strength Boron-Alloyed Steel with Hot Forming (핫 포밍을 이용한 고강도 보론 첨가 강의 기계적 및 성형 특성 평가)

  • Chae, M.S.;Lee, G.D.;Suh, Y.S.;Lee, K.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.236-244
    • /
    • 2009
  • In response to growing environmental and collision-safety concerns, the automotive industry has gradually used high-strength and ultla-high-strength steels to reduce the weight of automobiles. In order to overcome inherent process disadvantages of these materials such as poor formability and high springback at room temperature, hot forming has recently been developed and adopted to produce some important structural parts in automobiles. This method enables manufacturing of components with complex geometric shapes with minimal springback. In addition, a quenching process may enhance the material strength by more than two times. This paper investigates mechanical and forming characteristics of high-strength boron-alloyed steel with hot forming, in terms of hardness, microstructure, residual stress, and springback. In order to compare with experimental results, a finite element analysis of hot forming process coupled with phase transformation and heat transfer was carried out using DEFORM-3D V6.1 and also, to predict high temperature mechanical properties and flow curves for different phases, a material properties modeler, JMatPro was used.