• 제목/요약/키워드: Geometric phase analysis

검색결과 88건 처리시간 0.026초

DigitalMicrograph Script Source Listing for a Geometric Phase Analysis

  • Kim, Kyou-Hyun
    • Applied Microscopy
    • /
    • 제45권2호
    • /
    • pp.101-105
    • /
    • 2015
  • Numerous digital image analysis techniques have been developed with regard to transmission electron microscopy (TEM) with the help of programming. DigitalMicrograph (DM, Gatan Inc., USA), which is installed on most TEMs as operational software, includes a script language to develop customized software for image analysis. Based on the DM script language, this work provides a script source listing for quantitative strain measurements based on a geometric phase analysis.

3차원 형상측정을 위한 전자 스페클 등고선 추출법에 관한 연구 (A Study on Elecctronic Speckle Contouring for 3-D Shape Measurement)

  • 김계성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.239-244
    • /
    • 1998
  • ESP(Electronic Speckle Pattern Interferometry) is an optical technique to measure deforamtion of engineering components and materials in industrial areas. ESPI, a non-contact and non-destructive measuring method, is capable of providing full-field results with high spatial resolution and high speed. One of important application aspects using electronic speckle pattern interferometry is to generate contours of a diffuse object in order to provide data for 3-D shape analysis and topography measurement. The electronic speckle contouring is suitable for providing measurement range from millimeters to several centimeters. In this study, we introduce the contouring method by modified dual-beam speckle pattern interferometer and a shift of the two illumination beams through optical fiber in order to obtain the contour fringe patterns. Before the experiments, we performed the geometric analysis for dual-beam-shifted ESPI contouring. And by this geometric analysis, we performed the electronic speckle contouring experiment. We used 4-frame phase shifting method with PZT for quantitative analysis of contour fringes. Finally, we showed good agreements between the geometric analysis and experimental results.

  • PDF

Analysis of Galloping Amplitude for Conductors With Inter-phase Spacers

  • Kim Hwan-Seong;Nguyen Tuong-Long
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.42-51
    • /
    • 2006
  • The main purpose of this paper is to calculate the behaviors of inter-phase spacers to reduce the amplitude of galloping in conductors. In simulation, three phases and iced-single/two-bundles conductors with/without spacers are considered in viewpoint of standard cases. The implicit/explicit finite element methods are used to calculate the transient response with geometric nonlinear behavior. The ANSYS/LS-DYNA program is also applied. Calculation results can be used to predict the positions to insert the inter-phase spacers between conductors.

Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects

  • Faleh, Nadhim M.;Abboud, Izz Kadhum;Nori, Amer Fadhel
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.707-717
    • /
    • 2020
  • In this paper, analysis of thermal post-buckling behaviors of sandwich nanobeams with two layers of multi-phase magneto-electro-thermo-elastic (METE) composites have been presented considering geometric imperfection effects. Multi-phase METE material is composed form piezoelectric and piezo-magnetic constituents for which the material properties can be controlled based on the percentages of the constituents. Nonlinear governing equations of sandwich nanobeam are derived based on nonlocal elasticity theory together with classic thin beam model and an analytical solution is provided. It will be shown that post-buckling behaviors of sandwich nanobeam in thermo-electro-magnetic field depend on the constituent's percentages. Buckling temperature of sandwich nanobeam is also affected by nonlocal scale factor, magnetic field intensity and electrical voltage.

실측형상오차를 이용한 3.5인치 HDD 스핀들 볼베어링의 NRRO 해석 (NRRO Analysis of 3.5" HDD Spindle Ball Bearings Utilizing the Measured Geometric Imperfection)

  • 이영근;최상규;윤기찬;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.585-591
    • /
    • 2003
  • It has been widely known that geometrical or form errors of ball bearings such as ball size error, ball waviness, inner and outer race waviness due to inherent manufacturing imperfection are one of the major sources of uncontrollable non-repeatable run-out (NRRO) vibration in HDD spindle motor. NRRO in HDD is also known to be the primary cause of limiting the storage capacity of HDD. In this paper, We performed vibration analysis for NRRO a ball bearing being used in 3.5" HDD spindle motor. To theoretically estimate NRRO considering the geometrical errors of ball bearing components, a simple three degrees of freedom model was proposed and then vibration analysis for axial and radial NRRO was conducted utilizing the measured geometric imperfection of a bearing with both the waviness magnitude and phase taken into account. Effects of bearing preload and clearance on NRRO was also investigated as an effort to predict their optimum values minimizing bearing NRRO.

  • PDF

정확한 위상정보를 얻기 위한 탈초점 영상들의 이미지 처리기법 (Image Processing of Defocus Series TEM Images for Extracting Reliable Phase Information)

  • 송경;신가영;김종규;오상호
    • Applied Microscopy
    • /
    • 제41권3호
    • /
    • pp.215-222
    • /
    • 2011
  • We discuss the experimental procedure for extracting reliable phase information from a defocus series of transmission electron microscopy (TEM) dark-field images using the transport of intensity equation (TIE). Taking InGaN/GaN multi-quantum well light-emitting diode as a model system, various factors affecting the final result of reconstructed phase such as TEM sample preparation, TEM imaging condition, image alignment, the correction of defocus values and the use of high frequency pass filter are evaluated. The obtained phase of wave function was converted to the geometric phase of the corresponding lattice planes, which was then used for the two-dimensional mapping of lattice strain following the dark-field inline holography (DIH) routine. The strain map obtained by DIH after optimized image processing is compared with that obtained by the geometric phase analysis of high resolution TEM (HRTEM) image, manifesting that DIH yields more accurate and reliable strain information than HRTEM-based GPA.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

Spotlight SAR 신호처리기법 FSA를 이용한 위성 자세오차로 인한 위상오차 영향분석 및 보정 (The Effect Analysis and Correction of Phase errors by Satellite Attitude Errors using the FSA for the Spotlight SAR Processing)

  • 심상흔
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.160-169
    • /
    • 2007
  • In this paper, we have described and simulated the effect analysis and correction of phase errors in the SAR rawdata induced by satellite attitude errors such as drift, jitter. This simulation is based on the FSA(Frequency Scaling Algorithm) for high resolution image formation of the Spotlight SAR. Phase errors produce the degradation of SAR image quality such as loss of resolution, geometric distortion, loss of contrast, spurious targets, and decrease in SNR. To resolve this problem, this paper presents method for correction of phase errors using the PGA(Phase Gradient Algorithm) in connection with the FSA. Several results of the phase errors correction are presented for Spotlight SAR rawdata.

NUFLEX의 다상유동 해석 (NUMERICAL ANALYSIS OF MULTIPHASE FLOW BY NUFLEX)

  • 손기헌;서영호;유태진;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.95-98
    • /
    • 2007
  • A general purpose program NUFLEX has been extended for two-phase flows with topologically complex interface and cavitation flows with liquid-vapor phase change caused by large pressure drop. In analysis of two-phase flow, the phase interfaces are tracked by employing a LS(Level Set) method. Compared with the VOF(Volume-of-Fluid} method based on a non-smooth volume-fraction function, the LS method can calculate an interfacial curvature more accurately by using a smooth distance function. Also, it is quite straightforward to implement for 3-D irregular meshes compared with the VOF method requiring much more complicated geometric calculations. Also, the cavitation process is computed by including the effects of evaporation and condensation for bubble formation and collapse as well as turbulence in flows. The volume-faction and continuity equations are adapted for cavitation models with phase change. The LS and cavitation formulation are implemented into a general purpose program for 3-D flows and verified through several test problems.

  • PDF

전자 스페클 패턴 간섭법을 이용한 형상 측정에 관한 연구 (A Study on Shape Measurement by Using Electronic Speckle Pattern Interferometry)

  • 강영준;김계성
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.156-164
    • /
    • 1998
  • Electronic Speckle Pattern Interferometry(ESPI) has been used to measure surface deformations of engineering components and materials in industrial areas. ESPI, a non-contact and non-destructive technique, is capable of providing full-field results with high spatial resolution and high speed. One of the important application using electronic speckle pattern interferometry is electronic speckle contouring of a diffused object for 3-D shape analysis and topography measurement. Generally the electronic speckle contouring is suitable for providing measurement range from millimeters to several centimeters. In this study, we introduce the contouring method by modified dual-beam speckle pattern interferometer and the shift of the two illumination beams through optical fiber in order to obtain the contour fringe patterns. We also describe formation process of depth contour fringes and grid contour fringes by shifting direction of the two illumination beams. Before the experiments, we performed the geometric analysis for dual-beam-shifted ESPI contouring, and then, the electronic speckle contouring experiment with various specimens. For quantitative analysis of the contour fringes, we used 4-frame phase shifting method with PZT Finally, good agreement between the geometric analysis and experimetal results is obtained.

  • PDF