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Abstract

In the analysis of constrained holonomic systems, the
Lagrange multiplier method yields a system of second-order
ordinary differential equations of motion and algebraic
constraint equations. Conventional holonomic or
nonholonomic constraints are defined as geometric
constraints in this paper. Previous works concentrate on the
geometric constraints. However, if the total energy of a
dynamic system can be computed from the initial energy plus
the time integral of the energy input rate due to external or
internal forces, then the total energy can be artificially treated
as a constraint. The violation of the total energy constraint
due to numerical errors can be used as information to control
these errors. It is a necessary condition for accurate
simulation that both geometric and energy constraints be
satisfied. When geometric constraint control is combined
with energy constraint control, numerical simulation of a
constrained dynamic system becomes more accurate. A new
convenient and effective method to implement energy
constraint control in numerical simulation is developed based
on the geometric interpretation of the relation between
constraints in the phase space. Several combinations of
energy constraint control with either Baumgarte’s Constraint

Violation Stabilization Method (CVSM) are also addressed.

Introduction

In the analysis of constrained holonomic systems[1,2],
the Lagrange multiplier method yields a system of second-
order ordinary differential equations of motion and algebraic
constraint equations. The Lagrange equations of motion,
with the accompanying constraint equations for holonomic or
nonholonomic systems, cannot in general be solved
analytically.

Theoretical analyses[3-6] for general Lagrange
equations with algebraic constraint equations show that
constraint equations should be differentiated twice, in
general, for the system to be solved numerically without
iteration. The differentiation of constraint equations was
suggested[7] prior to these analyses and was shown to result

in unstable numerical solutions. The original constraint
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equations are rapidly violated, since the differentiated
constraint equations are unstable and numerical errors during
computation continuously disturb the systcm[gl. This
problem was seemingly resolved by a modified form of
second-order differential constraint equations. But this
solution, the Constraint Violation Stabilization Method
(CVSM)[9], did not work well for relatively complicated
systems and had some ambiguity in determining optimal

feedback gains.

Conventional holonomic or nonholonomic constraints
are defined as geometric constraints in this paper. The
aforementioned works concentrate on the geometric
constraints. However, if the total energy of a dynamic
system can be computed from the initial energy plus the time
integral of the energy input rate due to external or internal
forces, then the total energy can be artificially treated as a
constraint. The violation of the total energy constraint due to
numerical errors can be used as information to control these
errors. It is a necessary condition for accurate simulation that
both geometric and energy constraints be satisfied. When
geometric constraint control is combined with energy
constraint control, numerical simulation of a constrained
dynamic system becomes more accurate.

First, constrained dynamic systems are introduced,
using Lagrange multipliers, and then followed by the
introduction of Baumgarte’s Constraint Violation

Stabilization Method (CVSM). Conventional methods for
implementing energy constraint control are then reviewed. A

new convenient and effective method to implement energy
constraint control in numerical simulation is developed based
on the geometric interpretation of the relation between
constraints in the phase space.

Constrained Dynamic Systems

Constraints are either holonomic or nonholonomic.
When the Lagrange multiplier method is applied to a dynamic
system with holonomic constraints{1,2], the equations of
motion are described by



M@ q+®g A=G@at (1)

®@q.n=0 @

where the holonomic constraint functions ®: R™1 — R™,
generalized coordinates ge R”, m < n, and ime t 20. In Eq.
(1), A€ R™is aLagrange multiplier. The inertia matrix M
€ R™" is positive definite, and G € R™ represents the
remaining dynamic terms in the equation. Then the dynamic
system with holonomic constraints is described by a set of n
differential equations (1) and m algebraic equations (2).

If the Lagrange multiplier A can be computed or
expressed in terms of q, §, and t, then the system of
algebraic differential equations can be solved numerically. A
fundamental method for computing A without using implicit
algorithms is to differentiate the constraint equation (2) twice
with respect to time. This results in the equation

® (,3.4) =0 3)

After some manipulations A can be obtained in the form

A = A(g,q.t) (C))
Eq. (4) is substituted back into (1) to yield
G=A (@.3.AQ.anb) (5)

Since the n second-order differential equations in q do not
involve the m Lagrange multipliers A in (5), the equations of
motion can be solved numerically. In this paper, Eq. (5) is
the differential equation that forms the basis for the numerical
simulations.

Baumgarte’s Constraint Violation Stabilization
Method

A control U(®,d,1) can be added to the right side of
Eq. (3) in order to stabilize the reduction of the geometric
constraint violations. Thus we let

@ = U@D,d,1) (6)
where Baumgarte suggests the form
Us-ad-Bod )
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The above arguments can be directly extended to
nonholonomic constraints without any difficulty. In this case
the constraint equation, modified to suppress the
nonholonomic constraint violations, has the form
g, 9,49 = UID =-n T, q,0) ®

where I1 is a nonholonomic constraint function, and U is a

The
nonhelonomic constraint is differentiated only once, rather

control to stabilize the constraint violation.

than twice as in the holonomic case, in order that the new
equivalent system will be represented by second-order
differential equations.

Energy Constraint Control Methods

There are at least two methods available in the literature
for implementing an energy constraint, using the Lagrange
equations of motion. The first method is described by
Baumgarte[9]. The idea is to use the dynamic constraint
equations modified from the original energy constraint
equations in a manner similar to the nonholonomic case in
Baumgarte’s Constraint Violation stabilization Method
(CVSM). If y is the energy constraint function, we let

y+ny=0, v =y(@Q.Q ©

In general,

t

\VET"‘V“(T"‘V){)“I Edt

«0

where E is the energy input rate to the system. For a

conservative system
y=E —Eq
where E is the total energy, expressed in terms of g and q.

The Lagrange equation of motion for holonomic systems[8]
can be described by

LT .
Mq)q + @fq,91 = Gla.d.1

If an energy constraint is added to the equation, then

.. T T
Mq+¢qk+wéu=G (10)



where A and p are Lagrange multipliers. After some

manipulations we obtan
= v M) v M (G- 0T &)+ waq + ] iy

Substituting (11) back into (10) results in the equation of

motion without g, which is

§=MUG -} (12)

-MT v M) [ M (G -@f2) + vy g +ny]

Here n should be chosen so that the energy constraint is
stabilized.

The second method for implementing energy constraint
control is based on the steepest descent aigorithm[10]. The
correction forces are applied to the equations of motion so
that the integration of q and ( moves in the direction which
most rapidly reduces the violation of the energy
constraint[11]. To ensure that the minimum[12,13] of y is
zero, the negative gradient of y2is fed back into the
equations of motion (5). That s,

2
dq_, 5,2V
t aq (13)
9 2
dv _ _ hd
dt Afq,v,t)— pv 3y

Here pq and py are positive gain constants to be determined
and, ideally, y(q,v) = 0. Since dy2/9q = 2y(dy/dq) and
dYZ/adv = 2y(dy/dv), these control terms disappear when
=0.
implementation of the energy constraint control in (13) does

In the analytic solution, y = O is satisfied. Thus,

not change the exact solution of the original dynarmic system
equations. Both § and v can be considered to represent the
total time derivative of q. However, d/dt is used to express
the total time derivative when constraint control terms are
added . The method in (13) of energy constraint control has
been successfully applied in the computation of space and
reentry trajectories{13]. Note that (13) is different from (12),
and that (13) is simpler to implement.

A New Method of Implementing Energy Constraint
Control

In the q, q phase space the surfaces of constant
energy and the surfaces for conventional holonomic or
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nonholonomic constraints are not in general perpendicular to
each other. The surfaces are given by

w(g, =0 : Energy Constraint
xi(q, §, ) =0 , i=1,2,..., m : Geometric Constraints
In general,
8 w 8 O \T
a(q) ( ) *0 12 m (14)
q

R™1,R. One case

where q, ge R®, y: R™R, and %
where the energy and geometric constraint surfaces are

orthogonal is illustrated in the following example. Let

y(@)=0
and xa)=0 i=1,2,....m
Then
SR
NS
e[|
\ q)’ 0 ‘
Thus,
LAY Y
Qe =
q q

The solution to the equations of motion of a given system can
be interpreted as a point moving in the state-variable phase
space. The necessary condition for the exact simulation of
the given equations of motion is that the point moves along
the common intersection of all the constraint surfaces in the
phase space. Numerical errors in the simulation represent
disturbances which continuously perturb the point from this
common intersection. The constraint violation control is
designed to minimize the effect of these disturbances and
keep the point close to the constraint-surface intersection.

If violations of both geometric and energy constraints
are relatively small, then the point is always close to the



constraint surface intersection. If a two-dimensional view is
taken in the neighborhood of the intersection, then the lines
indicating the constraints can be viewed as nearly linear, as in
Fig 1. The intersection in the phase space is the origin O in
this two-dimensional view, and the phase point is denoted as
P in the figure. The point P is continually disturbed by the
numerical integration errors during the simulation. The
disturbance can be considered to be composed of two
orthogonal components (dc,,dc,) in the plane. When the
CVSM is applied to control the gcometric constraint
violation, the CVSM forces the point P to move toward the
%; = 0 axis. Thus, the control of the CVSM generally has
two components, (fc;.fc,), where fc, is always directed
toward the 7; = 0 axis. Note that the directions of
de;,dcy.and fc, may be reversed in the figure, and that the
relative angle O between two axes can be a function of the

state variables and time, i.e., 8 = 6(q,q,1)-

dey

%0

Fig 1. Two-dimensional geometric interpretation of CVSMs combined
with energy const-aint control in phase space.

If the constraint surfaces of the geometric and the
energy constraints are not orthogonal to each other in the
phase space, which in general will be the case, then the
relative position of P with respect to the energy constraint
surface is changed by applying geometric constraint control.
There exists no guarantee that P moves toward the
intersection O of the two constraint surfaces. In many cases
P moves farther from the origin O when applying geometric
constraint control alone. This phenomenon can be noted later
in the test simulations. When strong geometric constraint
control is applied to ensure very small geometric constraint
errors, the resulting drift in the total energy can in many
cases become very large. This in turn causes large errors in
the state variables as functions of time. These arguments
explain why a combination of geometric and energy
constraint controls is essential for accurate simulation, i.e., to
keep the point P close to the exact solution point O in Fig 1.
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The conventional methods described in the previous
section for implementing energy constraint control require the
point to move toward the y = 0 axis. The control can be
considered to be composed of two orthogonal components
(feq,fey), one perpendicular and one parallel to the x;= 0
axis. The CVSM forces the point P to move toward the %; =
0 axis while the energy control makes the point P move
toward the y = 0 axis. Note again that the relative angle 6 is
a function of state variables and time, which makes the
direction of the sum of (f¢,.fe,) difficult to predict. If the
CVSM's are combined with conventional energy methods,
the two different controls are geometrically coupled. That is,
the control to make P move toward the origin O may not be
simple.

A soiution to this difficulty, for the case of holonomic
systems is to make the controi of the energy constraint
parallel to the geometric constraint. That is, in effect we have

2y |t f 0 \
a(Q) = ay (16)
q { R
by setting pg=0. With py=0, Eq. (13) becomes
dq_
dr "
an
dv oy’
—~=A ) -
ar (q,v,1)-p, 3

Note that the geometric interpretation is not changed by
replacing y by y2. Replacement of Y by w2 makes the
effect of the feedback control on the point P proportionally
less as the point moves closer to the origin. That is,

a,“lZ
av

oy
=20y —
PV v

A

and the energy correction term in (17) varies linearly with .
By using (17) rather than (13), the control on the energy
constraint becomes parallel to the geometric constraint, i.e.,

fe, =0and pg=0. Then
|%)

0 |

ol
{31

and, from (16) and (18),

(18)



T

a
Application of the control on the geometric constraint forces

0 i=1,2,. (19)

.,m

the point to move toward the geometric constraint. But it
also changes the relative position of the point with respect to
the energy constraint, since the two different surfaces are not
perpendicular to each other. Because the control on the
energy constraint is parallel to the geometric constraints, the
energy control does not change the relative position of the
point P with respect to the ;=0 axis. Thus the fe,component
has been removed by setting pg=0. Appropriate choice of the

gains in (17) will force the point P to move toward the origin
O despite the presence of truncation errors,

The difficulty associated with proper choice of these
gains is dependent on how the constraints are coupled in

phase space. The variable Y(q,q,t), defined as

EREy

‘a( q )‘ ‘a )I = Yai(q,qgt) i=1,2,...,m
q

( q l 20)
q

can be used as a measure of the degree of coupling when an
energy constraint control and geometric constraint controls
are combined. The larger the magnitude of Y, the more
substantial is the coupling.

Combination of Geometric Constraint Control
and Energy Constraint Control

Baumgarte's CVSM in (7) with U= —a®—B® leads
to a set of equations of the form

@D
9L A

Note again that q is replaced by vand that Ag = A ifa=p=
0. Both v and q represent the total time derivative of q. In
this paper, d/dt is used to express the time derivative to be
integrated numerically in the state equations. Combination of
(13) and (21) results in

dg _,_, ov?
t VTP dq
(22)
J
%{=Aa(q,v,t,a.ﬁ)—pv v
v
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If (17) is combined with (21), then

dq
dt

=V

23

dv
I = AB(Q:VJ,G,B)'P‘,

W

ov

Note that the vector associated with awz/av in (23) is
parallel to the @;= O surface in the sense of satisfying (19)
with d)i = A

Test Simulations

It will be shown experimentally why control of
geometric constraints only cannot yield accurate values of the
state variables in the numerical simulation of constrained
dynamic systems, even if the control may achieve successful
suppression of the geometric constraint violations. The
energy constraint control will trun out to be necessary for
accurate simulation even when independent coordinates are
chosen in the numerical simulation.

Example 1 (Fig2)

A unit mass moves along a unit circle in the XY-
plane. A gravity force Mg (M = 1) is applied in the negative
Y-direction. This is just a simple pendulum problem, with
the position of the unit pendulum mass with respect to the
suspension point represented by the dependent rectangular
coordinates X and Y rather than the usual independent polar
coordinate 8. The pendulum length equals unity in the
example. The equations of motion without constraint control

are

% X =Vy (24.2)
dy=vy @4.b)
dy, o x YX’+Vy¥-gY¥
S Vx=-X N (24.c)
2
dyeo_yVEi+Vy-gY
S Ve=-Y eyl (24.4)

The gravity g is fixed at 1 in the test simulations. In terms of
rectangular coordinates X and Y the holonomic constraint
equation is

¢=12~(X2+Y2—1)=0 25)



The energy constraint is

y=T+V —(To+ Vo)

= %(X2 + YY)+ gY —(To + Vo) =0 26)
The initial conditions are
X(0)=1, Y(@0)=0, X(0)=0, Y(0)=2 @n

With the initial conditions the pendulum starts with sufficient
upward velocity to cause it to rotate continuously but with
periodically-varying angular velocity. Accompanying time
histories of the state variables are presented in Fig 3.

(X.Y)

[ PR,

-
\_

Fig 2. A unit mass rotating on a unit circle.

'3

N

0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Fig 3. Example 1: Time histories of X anc

Adams-Bashforth 3rd (AB-3) integration method is
used with the integration step size h=0.01 sec in the test
simulations. The start-up problem of AB-3 is resolved by
using Runge-Kutta 4th-order (RK-4) integration to compute
necessary initial start-up conditions. With this simple

example six different cases are compared in geometric
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constraint violation ®, energy constraint violation v, and
time history of the errors in the state variable X. The case
where no constraint controls are applied is shown in the Figs
4 through 6, as well as the case where Baumgarte’s
geometric constraint control is applied. In Baumgarte's
CVSM critical damping is used for the gains & and B, i.e., B
=02 /4, and B = 40 is chosen and integration step size h =
0.01. The other two cases compared in the figures use an
independent coordinate by choosing 6 as a state variable,
where 0 is a counterclockwise angular displacement of the
unit mass from the positive X-axis. Then the equation of
motion is simply

6 +cos@=0 (28)
and the reference solutions X* and Y* are given by

X"= cos 6(t) (29.a)

Y*= sin O(t) (29.b)

If the energy constraint control is applied, the state equation

becomes

0=—cos6- 2p\jﬁé (30)

where
22 -2
0 —6o

\y:—-—2—+gsin6 €2

The gain p in (30) is chosen experimentally for smallest

energy constraint violation.

Fig 4 shows geometric constraint violations ®. In
the figure the cases where independent coordinates are
chosen are not compared, since the geometric constraints are
inherently satisfied in these cases. Fig 4 shows that the
geometric constraint controls, in either Baumgarte’s CVSM
or the new CVSGF, make the geometric constraint violations
stable. Note that the case of no constraint control is divided
by 10 for comparison in the figure. That is, the actual
constraint violation is 10 times larger than the one in the
figure. Fig 5 compares energy constraint violations y. Note
that some time histories are divided by corresponding
numbers for comparison in the figure. It shows that
Baumgarte’s geometric constraint control yields the largest
energy constraint violation withour energy constraint control.
Even when an independent coordinate is chosen, the energy
constraint violation is diverging without energy constraint



control. Finally, in Fig 6 the time domain errors in X are
compared. The reference solution for X* is obtained by
using RK-4 and h = 0.00001 to integrate (28). Fig 6 shows
that Baumgarte’s CVSM without energy constraint control
yields the largest time domain errors in X, even worse than
the case where no constraint controls are applied. It can also
be noticed that even in the case where an independent
coordinate is chosen, the energy constraint control is

essential for suppressing errors in the state variable.

& [CVSGF; =20, p=20/(4-2Y)}
2.000E-6

P \ P e, PN N
-2.000E-6
-6.000E-6
-1.000E-5
@ {Baumgarte's CVSM, 3=40)
@ [Baumgarte's CVSM + energy control; B=40, p=20
-1.400E-$ :
@710 [no constraint control}
3 4 s 3 10 12 14 16 18 20
Time (sec)
Fig 4. Example | [AB-3, h=0.01] : geometric censtraint viol
@ {Baumgarte's CVSM + energy control; =40, p=2
® [independent coordinate 8 + energy
@ [CVSGF, (=20, p=20/(4-2Y)) \
2.000E-6

0
-2.000E-6

-6.000E-6

-1.000E-5
@/5 {independent coordinate 6]

-1.400E-5 /40 [no constraint control]
-1.800E.5 /80 {Baumgarte's CVSM, B=40]|
2 4 & 10 12 14 16 18 20
Time (sec)
Fig 5. Example | [AB-3, h=0.01} : energy constraint vial
001
@ [no constraint control}
@ [Baumgarte's CVSM + energy control; =40, p=2
4.000E.4 @ [CVSGF; (=20, p=20/(4 2Y)]
2.000E-4

o LN

\VARRV AR V4

-2.000E-4
-4.000E-4 N
<@ [mdcpcndcm coordinate 8 + cnergy
@ [independent coordinate )
001 CDIIO[BaumEmesCVSM &40]""‘
' H 4 6 3 to 12 14 16 18 20
Time (sec)
Fig 6. Example 1 [AB-3, h=0.01] : errors in the siate varia

Conclusion

In the numerical simulation of constrained dynamic
systems, geometric constraint control without energy
constraint control worsens the time domain errors in state

variables. The new constraint control in (23) is very
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effective and easy to implement in controlling errors of either
geometric constraints or an energy constraint. Energy
constraint control can be easily applied for more accurate

simulation even when independent coordinates are chosen.

References

[1] Greenwood, D. T., Principles of Dynamics, Prentice-
Hall, 1988.

Greenwood, D. T., Classical Dynamics, Prentice-Hall,
1977.

Gear, C. W.,"The Simultaneous Numerical Solution of
Differential-Algebraic Equations,” IEEE Trans. Circuit
Theory, TC-18, 1971, pp. 89-95.

Petzold, L. R.,"Differential/ Algebraic Equations Are
Not ODE's,” SIAM Journal on Scientific and Statistical
Computmg, Vol. 3, No. 3, 1982, pp. 367-384.

Gear, C. W.,"Differential-Algebraic Equations,”

(2]

(3]

4]

[5]
Computer Aided Analysis and Optimization of
Mechanical System Dynamics, ed., E. J. Haug, NATO
ASI Series, Series F, Vol. 9, Springer-Verlag,
Heidelberg, 1984, pp. 323-334.

[6] Gear, C. W. and Leimkuhler, B.," Automatic Integration

of Euler-Lagrange Equations with Constraints,” Journal

of Computational and Applied Mathematics, Vol 12 &

13, 1985, pp. 77-90.

Chace, M. A. and Smith, D. A.,"DAMN-A Digital

Computer Program for the Dynamic Analysis of

Generalized Mechanical Systems,” SAE Paper 710244,

Jan. 1971.

Nikravesh, P. E.,"Some Methods for Dynamic Analysis

of Constrained Mechanical Systems: A Survey,”

(7]

(8]

Computer Aided Analysis and Optimization of
Mechanical System Dynamics, ed., E. J. Haug,
Springer-Verlag, Heidelberg, 1984, pp. 351-368.

[9]1 Baumgarte, J.,"Stabilization of Constraints and Integrals
of Motion in Dynamical Systems,” Computer Methods
in Applied Mechanics and Engineering, 1972, pp. 1-16.

[10] Housner, A., Analog and Analog/Hybrid Computer
Programming, Prentice-Hall, 1971.

[11] Turner, R. M., "On the Reduction of Error in Certain
Analog Computer Calculations by the Use of Constraint
Equations,” Proceedings SJCC San Francisco, 1960.

[12] Fogarty, L. E. and Howe, R. M.,"Axis Systems for
Analog and Digital Computation of Space and Reentry
Trajectories,” Application Report, Applied Dynamics,
Inc., Ann Arbor, Michigan, September, 1963.

[13] Fogarty, L. E. and Howe, R. M.,"Space Trajectory
Computations at The University of Michigan,”
Simulation, Vol. 6, No. 4, 1966, pp. 220-226.



