• 제목/요약/키워드: Geometric approach

검색결과 723건 처리시간 0.027초

실시간 적응 A* 알고리즘과 기하학 프로그래밍을 이용한 선박 최적항로의 2단계 생성기법 연구 (Two-Phase Approach to Optimal Weather Routing Using Real-Time Adaptive A* Algorithm and Geometric Programming)

  • 박진모;김낙완
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.263-269
    • /
    • 2015
  • This paper proposes a new approach for solving the weather routing problem by dividing it into two phases with the goal of fuel saving. The problem is to decide two optimal variables: the heading angle and speed of the ship under several constraints. In the first phase, the optimal route is obtained using the Real-Time Adaptive A* algorithm with a fixed ship speed. In other words, only the heading angle is decided. The second phase is the speed scheduling phase. In this phase, the original problem, which is a nonlinear optimization problem, is converted into a geometric programming problem. By solving this geometric programming problem, which is a convex optimization problem, we can obtain an optimal speed scheduling solution very efficiently. A simple case of numerical simulation is conducted in order to validate the proposed method, and the results show that the proposed method can save fuel compared to a constant engine output voyage and constant speed voyage.

평면 직렬 메커니즘의 기하학적 속도 및 힘 해석 (Geometrical Velocity and Force Analyses on Planar Serial Mechanisms)

  • 이찬;이재원;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.648-653
    • /
    • 2015
  • The kinematics with the instantaneous motion and statics of a manipulator has generally been proven algebraically. The algebraic solutions give very simple and straightforward results but the solutions do not have any meaning in physics or geometry. Therefore it is not easy to extend the algebraic results to design or control a robotic manipulator efficiently. Recently, geometrical approach to define the instantaneous motion or static relation of a manipulator is popularly researched and the results have very strong advantages to have a physical insight in the solution. In this paper, the instantaneous motion and static relation of a planar manipulator are described by geometrical approach, specifically by an axis screw and a line screw. The mass center of a triangle with weight and a perpendicular distance between the two screws are useful geometric measures for geometric analysis. This study provides a geometric interpretation of the kinematics and statics of a planar manipulator, and the method can be applied to design or control procedure from the geometric information in the equations.

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.

MODIFIED GEOMETRIC PROGRAMMING PROBLEM AND ITS APPLICATIONS

  • ISLAM SAHIDUL;KUMAR ROY TAPAN
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.121-144
    • /
    • 2005
  • In this paper, we propose unconstrained and constrained posynomial Geometric Programming (GP) problem with negative or positive integral degree of difficulty. Conventional GP approach has been modified to solve some special type of GP problems. In specific case, when the degree of difficulty is negative, the normality and the orthogonality conditions of the dual program give a system of linear equations. No general solution vector exists for this system of linear equations. But an approximate solution can be determined by the least square and also max-min method. Here, modified form of geometric programming method has been demonstrated and for that purpose necessary theorems have been derived. Finally, these are illustrated by numerical examples and applications.

$C^1$보요소를 이용한 유연매체의 기하비선형 해석 (Geometric Nonlinear Analysis of Flexible Media Using $C^1$ Beam Element)

  • 지중근;홍성권;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.326-329
    • /
    • 2005
  • In the development of sheet-handling .machinery, it is important to predict the static and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at suck a high speed flexible media behaves geometric nonlinearity of large displacement and small strain. In this paper, static analysis of flexible media are performed by FEM considering geometric nonlinearity. Linear stiffness matrix and geometric nonlinear stiffness matrix based m the updated Lagrangian approach are derived using $C^1$ beam element and numerical simulations are performed by Updated Newton-Raphson(UNR) method.

  • PDF

Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Computers and Concrete
    • /
    • 제15권3호
    • /
    • pp.373-389
    • /
    • 2015
  • The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.

A dual approach to perform geometrically nonlinear analysis of plane truss structures

  • Habibi, AliReza;Bidmeshki, Shaahin
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.13-25
    • /
    • 2018
  • The main objective of this study is to develop a dual approach for geometrically nonlinear finite element analysis of plane truss structures. The geometric nonlinearity is considered using the Total Lagrangian formulation. The nonlinear solution is obtained by introducing and minimizing an objective function subjected to displacement-type constraints. The proposed method can fully trace the whole equilibrium path of geometrically nonlinear plane truss structures not only before the limit point but also after it. No stiffness matrix is used in the main approach and the solution is acquired only based on the direct classical stress-strain formulations. As a result, produced errors caused by linearization and approximation of the main equilibrium equation will be eliminated. The suggested algorithm can predict both pre- and post-buckling behavior of the steel plane truss structures as well as any arbitrary point of equilibrium path. In addition, an equilibrium path with multiple limit points and snap-back phenomenon can be followed in this approach. To demonstrate the accuracy, efficiency and robustness of the proposed procedure, numerical results of the suggested approach are compared with theoretical solution, modified arc-length method, and those of reported in the literature.

두개골 천공을 위한 NeuroMate 로봇의 경로 제어 (Path Control for NeuroMate Robot in a Skull Drilling System)

  • 정연찬
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.256-262
    • /
    • 2013
  • This paper presents a linear path control algorithm for NeuroMate robot in a skull drilling system. For the path control inverse kinematics of the robot is analyzed and a linear interpolation algorithm is presented. A geometric approach is used for solving inverse kinematic equations for the robot. Four feasible solutions are found through the approach. The approach gives geometric insights for selecting the best solution from the feasible solutions. The presented linear interpolation algorithm computes a next position considering current velocity and remaining distance to the target position. Presented algorithm is implemented and tested in a skull drilling system.

평형해법을 이용한 트렁크 리드의 단면해석과 3차원 형상합성 (The Sectional Analysis of Trunk-lid using the Equilibrium Approach and Three-Dimensional Shape Composition)

  • 정동원
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.66-71
    • /
    • 2001
  • A sectional analysis of trunk-lid carried out by using the equilibrium approach based on the force balance together with geometric relations and plasticity theory. In computing a force balance equation, it is required to define a geometric curve approximating the shape of sheet metal at any step of deformation from the interaction between the die and the deformed sheet. The trunk-lid panel material is assumed to possess normal anisotropy and to obey Hill's new yield criterion. Deformation of each section of trunk-lid panel is simulated and composed to get the three-dimensional shape by using CAD technique. It was shown that the three-dimensional shape composition of the two-dimensional analysis.

  • PDF

Simplified approach to estimate the lateral torsional buckling of GFRP channel beams

  • Kasiviswanathan, M.;Anbarasu, M.
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.523-533
    • /
    • 2021
  • The present study investigates the lateral torsional buckling behaviour of pultruded glass fiber reinforced polymer (GFRP) simply supported channel beams subjected to uniform bending about their major axis. A parametric study by varying the sectional geometry and span of channel beams is carried out by using ABAQUS software. The accuracy of the FE models was ensured by verifying them against the available results provided in the literature. The effect of geometric nonlinearity, geometric imperfections, and the dependency of finite element mesh on the lateral torsional buckling were carefully considered in the FE model. Lateral torsional buckling (LTB) strengths obtained from the numerical study were compared with the theoretical LTB strengths obtained based on the Eurocode 3 approach for steel sections. The comparison between the numerical strengths and the design procedure proposed in the literature based on Eurocode 3 approach revealed disagreements. Therefore, a simplified improved design procedure is proposed for the safe design strength prediction of pultruded GFRP channel beams. The proposed equation has been provided that might aid the structural engineers in economically designing the pultruded GFRP channel beams in the future.