• Title/Summary/Keyword: Geometric algorithm

Search Result 889, Processing Time 0.025 seconds

A NEW FIFTH-ORDER WEIGHTED RUNGE-KUTTA ALGORITHM BASED ON HERONIAN MEAN FOR INITIAL VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS

  • CHANDRU, M.;PONALAGUSAMY, R.;ALPHONSE, P.J.A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.191-204
    • /
    • 2017
  • A new fifth-order weighted Runge-Kutta algorithm based on heronian mean for solving initial value problem in ordinary differential equations is considered in this paper. Comparisons in terms of numerical accuracy and size of the stability region between new proposed Runge-Kutta(5,5) algorithm, Runge-Kutta (5,5) based on Harmonic Mean, Runge-Kutta(5,5) based on Contra Harmonic Mean and Runge-Kutta(5,5) based on Geometric Mean are carried out as well. The problems, methods and comparison criteria are specified very carefully. Numerical experiments show that the new algorithm performs better than other three methods in solving variety of initial value problems. The error analysis is discussed and stability polynomials and regions have also been presented.

Real-Time Face Avatar Creation and Warping Algorithm Using Local Mean Method and Facial Feature Point Detection

  • Lee, Eung-Joo;Wei, Li
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.777-786
    • /
    • 2008
  • Human face avatar is important information in nowadays, such as describing real people in virtual world. In this paper, we have presented a face avatar creation and warping algorithm by using face feature analysis method, in order to detect face feature, we utilized local mean method based on facial feature appearance and face geometric information. Then detect facial candidates by using it's character in $YC_bC_r$ color space. Meanwhile, we also defined the rules which are based on face geometric information to limit searching range. For analyzing face feature, we used face feature points to describe their feature, and analyzed geometry relationship of these feature points to create the face avatar. Then we have carried out simulation on PC and embed mobile device such as PDA and mobile phone to evaluate efficiency of the proposed algorithm. From the simulation results, we can confirm that our proposed algorithm will have an outstanding performance and it's execution speed can also be acceptable.

  • PDF

Parallel Algorithm for Spatial Data Mining Using CUDA

  • Oh, Byoung-Woo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • Recently, there is an increasing demand for applications utilizing maps and locations such as autonomous vehicles and location-based services. Since these applications are developed based on spatial data, interest in spatial data processing is increasing and various studies are being conducted. In this paper, I propose a parallel mining algorithm using the CUDA library to efficiently analyze large spatial data. Spatial data includes both geometric (spatial) and non-spatial (aspatial) attributes. The proposed parallel spatial data mining algorithm analyzes both the geometric and non-spatial relationships between two layers. The experiment was performed on graphics cards containing CUDA cores based on TIGER/Line data, which is the actual spatial data for the US census. Experimental results show that the proposed parallel algorithm using CUDA greatly improves spatial data mining performance.

Geometric interpretation of time-temperature superposition

  • Cho, Kwang-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.13-16
    • /
    • 2009
  • We investigate time-temperature superposition from the viewpoint of geometry. The arc length of viscoelastic plots provides powerful resolution for check of the validity of time-temperature superposition. We also suggest a new algorithm for determination of shift factor which is base on the minimization of the total arc length and does not assume any functional form of viscoelastic function.

충돌회피를 위한 다관절 로봇의 최적 경로계획

  • 최진섭;양성모;강희용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.913-917
    • /
    • 1994
  • A collision-free geometric path for industrial articulated robot is searched among polyhedral obstacles considering kinematic charcteristics. Then minimum-time control of the geometric path is studied considering dynamic characteristics. The algorithm is simulated on PC for maximum speed, moving time and so forth.

  • PDF

Lateral Control of Vision-Based Autonomous Vehicle using Neural Network (신형회로망을 이용한 비젼기반 자율주행차량의 횡방향제어)

  • 김영주;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.687-690
    • /
    • 2000
  • Lately, many studies have been progressed for the protection human's lives and property as holding in check accidents happened by human's carelessness or mistakes. One part of these is the development of an autonomouse vehicle. General control method of vision-based autonomous vehicle system is to determine the navigation direction by analyzing lane images from a camera, and to navigate using proper control algorithm. In this paper, characteristic points are abstracted from lane images using lane recognition algorithm with sobel operator. And then the vehicle is controlled using two proposed auto-steering algorithms. Two steering control algorithms are introduced in this paper. First method is to use the geometric relation of a camera. After transforming from an image coordinate to a vehicle coordinate, a steering angle is calculated using Ackermann angle. Second one is using a neural network algorithm. It doesn't need to use the geometric relation of a camera and is easy to apply a steering algorithm. In addition, It is a nearest algorithm for the driving style of human driver. Proposed controller is a multilayer neural network using Levenberg-Marquardt backpropagation learning algorithm which was estimated much better than other methods, i.e. Conjugate Gradient or Gradient Decent ones.

  • PDF

Adaptive Structure of Wavelet Neural Network with Geometric Growing Criterion (기하학적인 성장기준을 적용한 웨이브렛 신경망의 적응 구조 설계)

  • 서재용;김성주;조현찬;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.449-453
    • /
    • 2001
  • In this paper, we propose an algorithm to design the adaptive structure of wavelet neural network with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angle criterion which attempts to assign a wavelet function that is nearly orthogonal to all other existing wavelet functions. These criteria provide a methodology that a network designer can construct wavelet neural network according to one's intention. We apply the proposed constructing algorithm of the adaptive structure of wavelet neural network to approximation problems of 1-D and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

Compensation of Thermal Errors for the CNC Machine Tools (II) - Analysis of Error Compensation Algorithm for the PC-NC Controller - (CNC 공작기계의 열변형 오차 보정 (II) - PC-NC제어기용 오차보정 알고리즘 분석 -)

  • 이재종;최대봉;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.214-219
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been presented in order to compensate thermal error of machine tools under the real-time. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

Optimum design of plane steel frames with PR-connections using refined plastic hinge analysis and genetic algorithm

  • Yun, Young Mook;Kang, Moon Myung;Lee, Mal Suk
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.387-407
    • /
    • 2006
  • A Genetic Algorithm (hereinafter GA) based optimum design algorithm and program for plane steel frames with partially restrained connections is presented. The algorithm was incorporated with the refined plastic hinge analysis method, in which geometric nonlinearity was considered by using the stability functions of beam-column members and material nonlinearity was considered by using the gradual stiffness degradation model that included the effects of residual stress, moment redistribution by the occurrence of plastic hinges, partially restrained connections, and the geometric imperfection of members. In the genetic algorithm, a tournament selection method and micro-GAs were employed. The fitness function for the genetic algorithm was expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions were expressed, respectively, as the weight of steel frames and the constraint functions which account for the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimum design results of two plane steel frames with fully and partially restrained connections were compared.

P2P Ranging-Based Cooperative Localization Method for a Cluster of Mobile Nodes Containing IR-UWB PHY

  • Cho, Seong Yun;Kim, Joo Young;Enkhtur, Munkhzul
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1084-1093
    • /
    • 2013
  • problem of pedestrian localization using mobile nodes containing impulse radio ultra wideband (IR-UWB) is considered. IEEE 802.15.4a-based IR-UWB can achieve accurate ranging. However, the coverage is as short as 30 m, owing to the restricted transmit power. This factor may cause a poor geometric relationship among the mobile nodes and anchor nodes in certain environments. To localize a group of pedestrians accurately, an enhanced cooperative localization method is proposed. We describe a sequential algorithm and define problems that may occur in the implementation of the algorithm. To solve these problems, a batch algorithm is proposed. The batch algorithm can be carried out after performing the sequential algorithm to linearize the nonlinear range equation. When a sequential algorithm cannot be performed due to a poor geometric relationship among nodes, a batch algorithm can be carried out directly. Herein, Monte Carlo simulations are presented to illustrate the proposed method and verify its performance.