• Title/Summary/Keyword: Geometric Structure

Search Result 1,004, Processing Time 0.029 seconds

The Development of Discriminant Models for Subway Inner Noise (지하철 차내 소음 판별모형 개발에 관한 연구 - 서울시 지하철 5호선을 중심으로 -)

  • Kim, Tae-Ho;Do, Hwa-Yong;Won, Jai-Mu;Yoon, Sang-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.678-684
    • /
    • 2007
  • This research has defined the factors of noise in cars during subway train services, which is surfacing as a new environmental trouble. It shows additional accomplishment of a discerning analysis on the standard of noise regulation as well as its seriousness. According to the Enforcement Regulations for Noise and Vibration under the Ministry of Environment and its standard noise regulation figure 70dB, we divided two groups of which train noise figures are over and under 70dB respectively, and used their 359 results about noise, geometric structures and operation elements, for this analysis. The results and suggestions are following. First of all, when we discern the seriousness of noise in a train, the track type has mattered in geometric structure and the velocity in operation elements. Therefore, when we construct subway from now on, we should take the track type in consideration and establish plans to keep proper speed in respect of operation. Secondly, the established discernment model in this research can be used in making alternative plans or improvement of subway trains hereafter, showing relatively high accuracy of estimation. Consequently, the readjustment of geometric structure and operation elements is needed, not to make it over the regulation standard of noise in case the noise in train is serious. The discriminant model of this research can be used as elementary material for comfortable and safe subway trains, making the estimation of noise seriousness possible.

Second graders' understanding of patterns: Focusing on the comparative analysis of before and after learning of the finding rules unit (초등학교 2학년 학생들의 패턴에 대한 이해 실태 조사: 규칙 찾기 단원의 학습 전과 후의 비교분석을 중심으로)

  • Pang, JeongSuk;Lee, SooJin;Kang, Eunjeen;Kim, Leena
    • The Mathematical Education
    • /
    • v.62 no.2
    • /
    • pp.175-194
    • /
    • 2023
  • Despite the importance of pattern learning for elementary school students, few studies have investigated in detail the understanding of patterns of lower-grade students. This study aimed to analyze the understanding of patterns of second-grade elementary school students. Since the patterns in the second grade are taught through the unit called Finding Rules, students' understanding of patterns was compared and contrasted before and after they learned the unit. To this end, a written instrument to measure students' understanding of patterns was developed on the basis of previous studies on pattern learning for lower-grade students. A total of 189 students were analyzed. As a result of the study, the overall correct answer rates in the post-test were higher in most items than those in the pre-test, illustrating the positive effect of the specific unit. However, students found it difficult to find rules in which two components would change simultaneously either in geometric or numeric patterns, find patterns that would be similar in structure, represent geometric patterns into numeric patterns, find empty terms in increasing patterns, and reason the specific terms in patterns that can be differently interpreted. Based on these research results, this study sheds light on students' understanding of patterns and suggests implications to improve their understanding.

Architectural Characteristics of Railway Station Water Towers in Korea - Focused on the Existing Railway Station Water Towers - (철도역사 급수탑의 건축적 특성에 관한 연구 - 현존하는 급수탑을 중심으로 -)

  • Kim, Jong-Hun;Yoo, Uoo-Sang;Woo, Don-Son
    • Journal of architectural history
    • /
    • v.15 no.2
    • /
    • pp.7-22
    • /
    • 2006
  • The Industrial Revolution brought a variety of new forms of structure, and as a group they are usually called 'industrial architecture'. Steam engines contributed greatly to architecture with a unique structure called 'water tower' to provide water for steam engines, especially the adoption of it. This study is to examine the changes of the building materials and architectural features of the water towers of railway stations built in the early twentieth century in South Korea. This study also attempts to describe the modern features of the industrial architecture, which did not get a chance to be noticed. Through this examination on water tower, which is a part of industrial architecture with sheer integration of function and pure geometric form, we would like to find the meaning of modern architecture in Korea. As we can see in the Korean oldest railway station water tower constructed in masonry at Yeonsan Station in 1911, early water towers were divided into the masonry machine room and the steel water tank. However, the masonry structure was soon turned into concrete structure with its formal features maintained as it was. The steel water tank was also replaced with concrete structure. As a result, while its basic structure remained, concrete structure had substituted for the every components of water tower. Concrete-built water towers were the high-tech architecture of that time and the most perfect structures built in concrete. Nevertheless, the perfection of the water tower form and the technology it attained were not transferred to other modern and contemporary architecture in South Korea. Since the subject to railway station water towers was the Japanese government, and steam engines were replaced with diesels in the midst of a complicated domestic situation after the independence, the need for water towers in railway stations disappeared and therefore, it became ignored and was difficult to look over the architectural features and values of early railway station water towers.

  • PDF

Progressive Inelastic Deformation Characteristics of Cylindrical Structure with Plate-to-Shell Junction Under Moving Temperature Front

  • Lee, Hyeong-Yeon;Kim, Jong-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • A study on the progressive inelastic deformation behavior of the 316 L stainless steel cylindrical structure with plate-to-shell junction under moving temperature front was carried out by structural test and analysis. The structural test intends to simulate the thermal ratcheting behavior occurring at the reactor baffle of the liquid metal reactor as free surface of hot sodium pool moves up and down under plant transients. The thermal ratchet load that heats the specimen up to 550$^{\circ}C$ was applied repeatedly and residual deformation was measured. The thermal ratcheting test was carried out with two types of cylindrical structures, one with plate to-shell junction and the other without the junction to investigate the effects of the geometric discontinuities on the global ratcheting deformation. The temperature distributions of the test specimens were measured and were used for the ratcheting analysis. The ratchet deformations were analyzed with the constitutive equation of the non-linear combined hardening model. The analysis results were in good agreement with those of the structural tests.

Seismic vulnerability assessment of confined masonry wall buildings

  • Ranjbaran, Fariman;Hosseini, Mahmood
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.201-216
    • /
    • 2014
  • In this paper the vulnerability of the confined masonry buildings is evaluated analytically. The proposed approach includes the nonlinear dynamic analysis of the two-story confined masonry buildings with common plan as a reference structure. In this approach the damage level is calculated based on the probability of exceedance of loss vs a specified ground motion in the form of fragility curves. The fragility curves of confined masonry wall buildings are presented in two levels of limit states corresponding to elastic and maximum strength versus PGA based on analytical method. In this regard the randomness of parameters indicating the characteristics of the building structure as well as ground motion is considered as likely uncertainties. In order to develop the analytical fragility curves the proposed analytical models of confined masonry walls in a previous investigation of the authors, are used to specify the damage indices and responses of the structure. In order to obtain damage indices a series of pushover analyses are performed, and to identify the seismic demand a series of nonlinear dynamic analysis are conducted. Finally by considering various mechanical and geometric parameters of masonry walls and numerous accelerograms, the fragility curves with assuming a log normal distribution of data are derived based on capacity and demand of building structures in a probabilistic approach.

An Analysis of the Spatial Configuration of Adolf Loos' House (아돌프 로스 단독주택의 공간구조 분석 연구)

  • Lee, Da-Yeon;Jun, Byung-Kweon
    • Journal of the Korean housing association
    • /
    • v.27 no.6
    • /
    • pp.85-93
    • /
    • 2016
  • The spaces have a variety of sizes dependent upon their function and significance as well as their geometric shape. An architect Adolf Loos (1870-1933) had incorporated a correlation between the unconstrained formation of space into design. He had noticeably revealed the features of space that are unconstrained and mutually related with each other, for the space compositions among modern architects. This study is about to analyze the feature of space structure for houses of Adolf Loos through Space syntax which is the quantitative space analyzing method for the subject of his detached houses. These houses were emphasized for functional aspects of space without unnecessary decorations. Le Corbusier's Villa Savoye was analysed along with it to review a comparative point of view of his house's characteristic. Based on this, the features of the spatial structure of Loos' house were examined in conjunction with his views space as essence. A J-Graph and VGA for Adolf Loos' detached house revealed the structure's spatial characteristics in which the interior space is located deeply removed from exterior yet it is integrated as a whole. Also, it revealed that the experiments of the various spatial structures shown in Adolf Loos' detached house and European rationalist architects like Le Corbusier affected each other at the same time.

Investigation of FIV Characteristics on a Coaxial Double-tube Structure (동심축 이중관 구조에서 유동기인진동 특성 고찰)

  • Song, Kee-Nam;Kim, Yong-Wan;Park, Sang-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1108-1118
    • /
    • 2009
  • A Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source of the order of $950^{\circ}C$ for nuclear hydrogen generation, which can produce hydrogen from water or natural gas. A primary hot gas duct (HGD) as a coaxial double-tube type cross vessel is a key component connecting a reactor pressure vessel and an intermediate heat exchanger in the VHTR. In this study, a structural sizing methodology for the primary HGD of the VHTR is suggested in order to modulate a flow-induced vibration (FIV). And as an example, a structural sizing of the horizontal HGD with a coaxial double-tube structure was carried out using the suggested method. These activities include a decision of the geometric dimensions, a selection of the material, and an evaluation of the strength of the coaxial double-tube type cross vessel components. Also in order to compare the FIV characteristics of the proposed design cases, a fluid-structure interaction (FSI) analysis was carried out using the ADINA code.

Analysis of Flexible Media Using ALE Finite Element Method (ALE 유한요소법을 이용한 유연매체의 거동해석)

  • Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.247-250
    • /
    • 2007
  • Flexible media such as the paper, the film, etc. are thin, light and very flexible. They behave in geometrically nonlinear. Any of small force makes large deformation. So we must including aerodynamic effect when its behavior is predicted. Thus, it becomes fully coupled fluid-structure interaction(FSI) problem. In FSI problems, where the fluid mesh near the structure undergoes large deformations and becomes unacceptably distorted, which drive the time step to a very small value for explicit calculations, the arbitrary Lagrangian-Eulerian(ALE) methods or rezoning are used to create a new undistorted mesh for the fluid domain, which allows the calculations to continue. In this paper, FE sheet model considering geometric nonlinearity is formulated to simulate the behavior of the flexible media. Aerodynamic force to the media by surrounding air is calculated by solving the incompressible Navier-Stokes equations. Q2Q1(Taylor-Hood) element which means biquadratic for velocity and bilinear for pressure is used for fluid domain. Q2Q1 element satisfies LBB condition and any stabilization technique is not needed. In this paper, cantilevered sheet in the viscous incompressible Navier-Stokes flow is simulated to check the mesh motion and numerical integration scheme, and then falling paper in the air is simulated and the effects of some representative parameters are investigated.

  • PDF

Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance (체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구)

  • Won, Jun-Ho;Kwang, Kang-Jin;Choi, Joo-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.