• 제목/요약/키워드: Geometric Scheme

검색결과 277건 처리시간 0.02초

파라메트릭기법을 이용한 3차원 자유곡면 생성에 관한 연구 (A Study on the Freeform Surface Generation Using Parametric Method)

  • 김태규;변문현
    • 한국CDE학회논문집
    • /
    • 제3권4호
    • /
    • pp.293-303
    • /
    • 1998
  • The objective of this study is to develop a PC level freeform surface modeling system which explicitly represents information of part geometry. Surface modeler uses nonuniform rational B-spline (NURBS) function with nonuniform knot vector for the flexible modeling work. The results of this study are as follows. 1) By implementation surface modeler through applying representation scheme proposed to represent free-form surface explicity, the technical foundation to develop free-from surface modeling system using parametric method. 2) Besides the role to model geometric shape of a surface, geometric modeler is developed to model arbitrary geometric shape. By doing this, the availability of the modeling system is improved. Geometric modeler can be utilized application fields such as collision test of tool and fixture, and tool path generation for NC machine tool.

  • PDF

SOME GEOMETRIC PROPERTIES OF GOTZMANN COEFFICIENTS

  • Jeaman Ahn
    • 충청수학회지
    • /
    • 제37권2호
    • /
    • pp.57-66
    • /
    • 2024
  • In this paper, we study how the Hilbert polynomial, associated with a reduced closed subscheme X of codimension 2 in ℙN, reveals geometric information about X. Although it is known that the Hilbert polynomial can tell us about the scheme's degree and arithmetic genus, we find additional geometric information it can provide for smooth varieties of codimension 2. To do this, we introduce the concept of Gotzmann coefficients, which helps to extract more information from the Hilbert polynomial. These coefficients are based on the binomial expansion of values of the Hilbert function. Our method involves combining techniques from initial ideals and partial elimination ideals in a novel way. We show how these coefficients can determine the degree of certain geometric features, such as the singular locus appearing in a generic projection, for smooth varieties of codimension 2.

Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

  • Ky, V.S.;Tangaramvong, S.;Thepchatri, T.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1237-1258
    • /
    • 2015
  • This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.

SVD 및 트리플릿 기반의 디지털 워터마킹 기법 (Digital Watermarking Scheme based on SVD and Triplet)

  • 박병수;추형석;안종구
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.1041-1046
    • /
    • 2009
  • In this paper, we proposed a robust watermark scheme for image based on SVD(Singular Value Transform) and Triplet. First, the original image is decomposed by using 3-level DWT, and then used the singular values changed for embedding and extracting of the watermark sequence in LL3 band. Since the matrix of singular values is not easily altered with various signal processing noises, the embedded watermark sequence has the ability to withstand various signal processing noise attacks. Nevertheless, this method does not guarantee geometric transformation(such as rotation, cropping, etc.) because the geometric transformation changes the matrix size. In this case, the watermark sequence cannot be extracted. To compensate for the above weaknesses, a method which uses the triplet for embedding a barcode image watermark in the middle of frequency band is proposed. In order to generate the barcode image watermark, the pattern of the watermark sequence embedded in a LL3 band is used. According to this method, the watermark information can be extracted from attacked images.

고속 최소자승 점별계산법을 이용한 멀티 스케일 문제의 해석 (FCM for the Multi-Scale Problems)

  • 김도완;김용식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.599-603
    • /
    • 2002
  • We propose a new meshfree method to be called the fast moving least square reproducing kernel collocation method(FCM). This methodology is composed of the fast moving least square reproducing kernel(FMLSRK) approximation and the point collocation scheme. Using point collocation makes the meshfree method really come true. In this paper, FCM Is shown to be a good method at least to calculate the numerical solutions governed by second order elliptic partial differential equations with geometric singularity or geometric multi-scales. To treat such problems, we use the concept of variable dilation parameter.

  • PDF

PARAMETRIC DESIGN을 위한 자동설계모듈 생성 (Automated design module generation system for parametric design)

  • 이석희;반갑수
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.236-247
    • /
    • 1993
  • An davanced method for the automatic generation of parametric models in computer- aided design systems is required for most of two-dimensional model which is represented as a set of geometric elements, and constraining scheme formulas. The development system uses geometric constraints and support of topology parameters from feature recognition and grouping the design entities into optimal ones from pre-designed drawings. The aim of this paper is to present guidelines for the application and development of parametric design modules for the standard parts in mechanical system, the basic constitutional part of mold base, and other 2D features.

  • PDF

Inscribed Approximation based Adaptive Tessellation of Catmull-Clark Subdivision Surfaces

  • Lai, Shuhua;Cheng, Fuhua(Frank)
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.139-148
    • /
    • 2006
  • Catmull-Clark subdivision scheme provides a powerful method for building smooth and complex surfaces. But the number of faces in the uniformly refined meshes increases exponentially with respect to subdivision depth. Adaptive tessellation reduces the number of faces needed to yield a smooth approximation to the limit surface and, consequently, makes the rendering process more efficient. In this paper, we present a new adaptive tessellation method for general Catmull-Clark subdivision surfaces. Different from previous control mesh refinement based approaches, which generate approximate meshes that usually do not interpolate the limit surface, the new method is based on direct evaluation of the limit surface to generate an inscribed polyhedron of the limit surface. With explicit evaluation of general Catmull-Clark subdivision surfaces becoming available, the new adaptive tessellation method can precisely measure error for every point of the limit surface. Hence, it has complete control of the accuracy of the tessellation result. Cracks are avoided by using a recursive color marking process to ensure that adjacent patches or subpatches use the same limit surface points in the construction of the shared boundary. The new method performs limit surface evaluation only at points that are needed for the final rendering process. Therefore it is very fast and memory efficient. The new method is presented for the general Catmull-Clark subdivision scheme. But it can be used for any subdivision scheme that has an explicit evaluation method for its limit surface.

무인 항공 시스템에서 촬영 영상의 GCP 기하보정을 통한 정밀한 지상 표적 좌표 획득 방법 (Acquiring Precise Coordinates of Ground Targets through GCP Geometric Correction of Captured Images in UAS)

  • 안남원;임경미;정소영
    • 한국군사과학기술학회지
    • /
    • 제26권2호
    • /
    • pp.129-138
    • /
    • 2023
  • Acquiring precise coordinates of ground targets can be regarded as the key mission of the tactical-level military UAS(Unmanned Aerial System) operations. The coordinates deviations for the ground targets estimated from UAV (Unmanned Aerial Vehicle) images may depend on the sensor specifications and slant ranges between UAV and ground targets. It has an order of several tens to hundreds of meters for typical tactical UAV mission scenarios. In this paper, we propose a scheme that precisely acquires target coordinates from UAS by mapping image pixels to geographical coordinates based on GCP(Ground Control Points). This scheme was implemented and tested from ground control station for UAS. We took images of targets of which exact location is known and acquired the target coordinates using our proposed scheme. The experimental results showed that errors of the acquired coordinates remained within an order of several meters and the coordinates accuracy was significantly improved.

접근확률 기반의 네트워크 자원할당방식의 최적화에 관한 연구 (A study on the optimization of network resource allocation scheme based on access probabilities)

  • 김도규
    • 한국정보통신학회논문지
    • /
    • 제10권8호
    • /
    • pp.1393-1400
    • /
    • 2006
  • 본 논문은 확률접근 기반의 네트워크 자원할당 방식에서 네트워크의 대표적인 서비스 품질 척도인 대기시간과 블러킹 확률이 특정 임계값을 넘지 않으면서 최소화가 되도록 접근 확률을 최적화하는 방법에 대하여 연구하였고 그에 따른 성능분석을 하였다. 확률 접근에 의한 제어 방식은 시스템에서 서비스 받고 있는 메시지의 수, 시스템에서 대기하고 있는 메시지의 수, 문턱 값, 컷오프 값 등의 시스템 상태에 따라 접근확률을 다르게 하여 자원의 할당을 동적으로 제어하는 방식이다. 접근 확률을 최적화하는 문제는 무한개의 균형 방정식을 포함하는 문제로서 Neuts의 행렬기하기법(matrix geometric method)을 통하여 유한개의 균형 방정식을 가지는 최적화 문제로 변환하였다. 또한 유한개의 균형방정식은 비선형 최적화 문제로 모델링이 되는데 이것을 다시 변수 치환 기법을 이용하여 설형 최적화 문제로 변환하여 최적의 접근 확률을 구하였다. 수치해석을 통하여 주어진 조건하에 최적의 접근 확률을 구한후 트래픽의 대기시간, 블러킹 확률 및 시스템 최대 이용률을 구하였고 버퍼의 문턱 값을 제어하여 시스템의 이용률이 증가하는 것을 보였다.

사용자 의도의 메쉬분할을 위한 기하적 속성 가중치 기반의 그리디 병합 방법 (Greedy Merging Method Based on Weighted Geometric Properties for User-Steered Mesh Segmentation)

  • 하종성;유관희
    • 한국콘텐츠학회논문지
    • /
    • 제7권6호
    • /
    • pp.52-59
    • /
    • 2007
  • 이 논문은 삼차원 메쉬의 의미있는 조각의 기하적 속성을 나타내기 위하여 정의한 병합우선순위메트릭에 기반한 사용자 의도 메쉬분할의 그리디 방법을 제시한다. 우선순위메트릭은 가우시안사상의 분포, 경계경로의 오목성, 경계경로의 길이, 면의 개수, 분할해상도의 5 가지 기하적 매개변수로 구성된 가중치 함수이다. 이러한 방식은 구도의 변경 없이 다른 기하적 매개변수를 정의하고 추가함으로써 확장될 수 있다. 실험 결과, 분할된 조각의 모양은 기하적 매개변수의 가중치를 부여함으로써 사용자 의도대로 조절될 수 있음을 보여준다.