• Title/Summary/Keyword: Geometric Nonlinear Behavior

Search Result 236, Processing Time 0.029 seconds

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Stability and nonlinear vibration of a fuel rod in axial flow with geometric nonlinearity and thermal expansion

  • Yu Zhang;Pengzhou Li;Hongwei Qiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4295-4306
    • /
    • 2023
  • The vibration of fuel rods in axial flow is a universally recognized issue within both engineering and academic communities due to its significant importance in ensuring structural safety. This paper aims to thoroughly investigate the stability and nonlinear vibration of a fuel rod subjected to axial flow in a newly designed high temperature gas cooled reactor. Considering the possible presence of thermal expansion and large deformation in practical scenarios, the thermal effect and geometric nonlinearity are modeled using the von Karman equation. By applying Hamilton's principle, we derive the comprehensive governing equation for this fluid-structure interaction system, which incorporates the quadratic nonlinear stiffness. To establish a connection between the fluid and structure aspects, we utilize the Galerkin method to solve the perturbation potential function, while employing mode expansion techniques associated with the structural analysis. Following convergence and validation analyses, we examine the stability of the structure under various conditions in detail, and also investigate the bifurcation behavior concerning the buckling amplitude and flow velocity. The findings from this research enhance the understanding of the underlying physics governing fuel rod behavior in axial flow under severe yet practical conditions, while providing valuable guidance for reactor design.

Differential Geometric Approach to Sliding Mode Control of Spacecraft Attitude Tracking

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1599-1603
    • /
    • 2004
  • Based on the idea that nonlinear PWM controller design can be directly applied to the attitude tracking problem of thruster-controlled spacecraft because it constitutes a sub-class of nonlinear PWM controlled system, nonlinear and output error feedback PWM controlled system is considered to describe the behavior of thruster-controlled spacecraft, and to determine actual thruster on-time which guarantees system stability. A differential geometric approach is utilized to show an asymptotical stability of average PWM system, which finally guarantees the stability of closed loop PWM controlled system. Simulation results show that the motions of PWM controlled system occurs very closely around those of the average model of PWM controlled system.

  • PDF

Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory

  • Ghannadpour, S.A.M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.245-259
    • /
    • 2019
  • The present study aims to investigate the ultimate strength and geometric nonlinear behavior of composite plates containing initial imperfection subjected to combined end-shortening strain and lateral pressure loading by using a semi-analytical method. In this study, the first order shear deformation plate theory is considered with the assumption of large deflections. Regarding in-plane boundary conditions, two adjacent edges of the laminates are completely held while the two others can move straightly. The formulations are based on the concept of the principle of minimum potential energy and Newton-Raphson technique is employed to solve the nonlinear set of algebraic equations. In addition, Hashin failure criteria are selected to predict the failures. Further, two distinct models are assumed to reduce the mechanical properties of the failure location, complete ply degradation model, and ply region degradation model. Degrading the material properties is assumed to be instantaneous. Finally, laminates having a wide range of thicknesses and initial geometric imperfections with different intensities of pressure load are analyzed and discuss how the ultimate strength of the plates changes.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

Nonlinear electromechanical behavior of piezoelectric materials: constitutive equations and numerical simulation (압전재료의 비선형 전기-기계적 거동: 구성방정식과 전산모사)

  • 김상주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.453-460
    • /
    • 2002
  • Piezoelectric solids such as PZT and PLZT have been widely used as sensors or actuators for various smart structural systems. The main problem occurring in the applications is that a larger and larger actuation force is required to maximize the function of the system. This naturally leads to local concentrations of electric or stress fields near crack tips or geometric irregularities and thereby results in a nonlinear behavior of the system Hence, it becomes more important to Predict the nonlinear behavior of piezoelectric solids In this Paper we investigate the micro-mechanism of nonlinear behavior in piezoelectric materials and propose constitutive equations. The calculation results obtained from an associated finite element Program are shown to be qualitatively consistent with experiments.

  • PDF

The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection

  • Jiaqin Xu;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.81-93
    • /
    • 2023
  • Due to the unclear mechanism of the influence of temperature on the resonance problem of doubly curved shells, this article aims to explore this issue. When the ambient temperature rises, the composite structure will expand. If the thermal effects are considered, the resonance response will become more complex. In the design of structure, thermal effect is inevitable. Therefore, it is of significance to study the resonant behavior of doubly curved shell structures in thermal environment. In view of this, this paper extends the previous work (She and Ding 2023) to the case of the nonlinear principal resonance behavior of graphene platelet reinforced metal foams (GPLRMFs) doubly curved shells in thermal environment. The effect of uniform temperature field is taken into consideration in the constitutive equation, and the nonlinear motion control equation considering temperature effect is derived. The modified Lindstedt Poincare (MLP) method is used to obtain the resonance response of doubly curved shells. Finally, we study the effects of temperature changes, shell types, material parameters, initial geometric imperfection and prestress on the forced vibration behaviors. It can be found that, as the temperature goes up, the resonance position can be advanced.

Behavior of R/C cylindrical shell under lateral load

  • Hara, Takashi;Shigematsu, Tsunemi;Tamura, Takahiro
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.361-369
    • /
    • 2003
  • In this paper, the structural behavior of R/C cylindrical panel is analyzed by experimental results. To avoid the geometric imperfection, R/C shell specimens are made by use of a stiff steel mold. From experimental results, the load carrying behavior of R/C cylindrical panel is presented under an external lateral pressure. Even if R/C shell does not posses geometric imperfections, the inaccuracy of the reinforcement position strongly affects to the ultimate strength and the failure patterns of such shells. To explain these effects, FEM nonlinear analyses are done under the same conditions as those of experiments. The behavior of R/C cylindrical shells are well simulated under the consideration of both the geometric imperfection and several inaccuracies.

Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.361-371
    • /
    • 2020
  • Exact solution for nonlinear behavior of clamped-clamped functionally graded (FG) buckled beams is presented. The effective material properties are considered to vary along the thickness direction according to exponential-law form. The in-plane inertia and damping are neglected, and hence the governing equations are reduced to a single nonlinear fourth-order partial-integral-differential equation. The von Kármán geometric nonlinearity has been considered in the formulation. Galerkin procedure is used to obtain a second order nonlinear ordinary equation with quadratic and cubic nonlinear terms. Based on the mode of the corresponding linear problem, which readily satisfy the boundary conditions, the frequencies for the nonlinear problem are obtained using the Jacobi elliptic functions. The effects of various parameters such as the Young's modulus ratio, the beam slenderness ratio, the vibration amplitude and the magnitude of axial load on the nonlinear behavior are examined.

Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects

  • Kunbar, Laith A. Hassan;Hamad, Luay Badr;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.619-630
    • /
    • 2020
  • This paper studies nonlinear free vibration characteristics of nonlocal magneto-electro-elastic (MEE) nanobeams resting on nonlinear elastic substrate having geometrical imperfection by considering piezoelectric reinforcement scheme. The piezoelectric reinforcement can cause an enhanced vibration behavior of smart nanobeams under magnetic field. All of previously reported studies on MEE nanobeams ignore the influences of geometric imperfections which are very substantial due to the reason that a nanobeam cannot be always perfect. Nonlinear governing equations of a smart nanobeam are derived based on classical beam theory and an analytical trend is provided to obtained nonlinear vibration frequency. This research shows that changing the volume fraction of piezoelectric constituent in the material has a great influence on vibration behavior of smart nanobeam under electric and magnetic fields. Also, it can be seen that nonlinear vibration behaviors of smart nanobeam are dependent on the magnitude of exerted electric voltage, magnetic potential, hardening elastic foundation and geometrical imperfection.