• Title/Summary/Keyword: Geometric Flow

Search Result 597, Processing Time 0.029 seconds

A Design Procedure for a Multi-Stage Axial Compressor Using the Stage-Stacking Method (단축적방법을 이용한 다단 축류압축기의 설계)

  • 강동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1598-1603
    • /
    • 1994
  • A preliminary design procedure for a multi-stage axial compressor is developed, which is based on the stage-stacking method. It determines the flow coefficient which gives rise to the design conditions required such as pressure ratio, mass flow rate and rotational speed for a given specific mass flow rate at inlet to a compressor. With this flow coefficient, blade radii, every stage and compressor performance characterics such as stage pressure ratio, adiabatic efficiency etc. are calculated by stacking each stage performance characteristics. It is shown that there is an optimum number of stage which results in the maximum of compressor overall efficiency for a given specific mass flow rate at inlet to a compressor. A test design was tried for three different geometric design constraints, and comparison with a previous study shows that present procedure could be used reliably in determining the number of compressor stage in preliminary design stage.

Analysis of Pedestrian Flow Characteristics in Subway Station (지하역사 기본 모델에 대한 여객 유동 특성 해석)

  • Nam Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.271-276
    • /
    • 2006
  • Insight into behaviour of pedestrians as welt as tools to assess passenger flow condition is important in such instances as planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM (Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.

VOID FRACTION PREDICTION FOR SEPARATED FLOWS IN THE NEARLY HORIZONTAL TUBES

  • AHN, TAE-HWAN;YUN, BYONG-JO;JEONG, JAE-JUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.669-677
    • /
    • 2015
  • A mechanistic model for void fraction prediction with improved interfacial friction factor in nearly horizontal tubes has been proposed in connection with the development of a condensation model package for the passive auxiliary feedwater system of the Korean Advanced Power Reactor Plus. The model is based on two-phase momentum balance equations to cover various types of fluids, flow conditions, and inclination angles of the flow channel in a separated flow. The void fraction is calculated without any discontinuity at flow regime transitions by considering continuous changes of the interfacial geometric characteristics and interfacial friction factors across three typical separated flows, namely stratified-smooth, stratified-wavy, and annular flows. An evaluation of the proposed model against available experimental data covering various types of fluids and flow regimes showed a satisfactory agreement.

Comparative Study on Evaluating Low-Flow in Ungauged Watershed (미계측 유역에서 저수량 산정 방법 비교 연구)

  • Baek, Kyong Oh
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • In this study, the methodologies for evaluating the low-flow at the ungauged watershed are reviewed and assessed. The ungauged watershed can be classified into different situations such as the partially recorded watershed and the completely ungauged watershed. The extension method and the percentile method are used to evaluated the low-flow at the partially recorded watershed. The drainage-area ratio method and the regional regression method are used at the completely ungauged watershed. These four methods are applied and validated based on the hydrological and geometric data acquired from unit watersheds in Han River basin for TMDLs. In case of partially recorded watershed, the values of low-flow evaluated by the extension method are in better agreement with measured flow-rate rather than those by the percentile method. In case of completely ungauged watershed, the drainage-area method is broadly used to estimate the low-flow. It must be paid attention to consider the treated sewage discharge produced at watersheds when applying the method.

Vibration Characteristics of a Curved Pipe Conveying Fluid with the Geometric Nonlinearity (기하학적 비선형성을 갖는 유체를 수송하는 곡선관의 진동 특성)

  • Jung, Du-Han;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.793-798
    • /
    • 2004
  • The vibration of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the extended Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. From these results, we should consider the geometric nonlinearity to analyze the dynamics of a curved pipe conveying fluid more precisely.

  • PDF

Geometrical Effects of an Active Casing Treatment on Aerodynamic Performance of a Centrifugal Compressor (능동형 케이싱 트리트먼트의 형상 변화가 원심압축기의 공력성능에 미치는 영향)

  • Ma, Sang-Bum;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.5-12
    • /
    • 2016
  • In this study, a parametric study on a cavity as casing treatment of a centrifugal compressor has been conducted using three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model. Two kinds of cavity were applied at choke and surge conditions, respectively, in this work. Inlet and outlet port widths, angle of outlet port, and length of cavity were chosen as the geometric parameters and investigated to find their effects on the aerodynamic performances such as adiabatic efficiency at design mass flow rate and stall margin of the centrifugal compressor. It was found that the aerodynamic performances of the centrifugal compressor were affected considerably by the four geometric parameters. The adiabatic efficiency was hardly changed by the geometric parameters, excepts for the angle of outlet port. With an increase in the angle of outlet port, the adiabatic efficiency and the stall margin decreased. The stall margin was more sensitive to the outlet port width than to the other geometric parameters. And, with a decrease in the outlet port width, the stall margin increased by 2% compared to that of the reference.

Numerical Analysis on the Flow Characteristics Considering the Inspiratory Flow Rate in a Human Airway (수치해석 기법을 이용한 호흡 유량에 따른 사람의 기도 내 유동 특성 연구)

  • Sung, Kun Hyuk;Ryou, Hong Sun
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.177-183
    • /
    • 2012
  • The inspiratory flow rate of a human is changed with the amount of the workload. The flow characteristic is affected by the inspiratory flow rate. In the flow field of airway, the both of turbulence intensity and secondary flow affect the deposition pattern of particles which is important for the drug-aerosol targeting. Thus the analysis of the flow characteristic in a human airway is important. The purpose of this study is to investigate the effects of the inspiratory flow rate on the flow characteristics in a human airway. The tubular airway is consistent with the oral cavity, pharynx, larynx and trachea. The relatively inspiratory flow rate is used at each case of human states regarding the workload. By the effect of geometric airway changes, transition to turbulent airflow after the larynx can occur with relaminarization further downstream. The low Reynolds number k-${\omega}$ turbulence model is used for analysis with flow regime. As the inspiratory flow rate is larger, the turbulence kinetic energy and secondary flow intensity increase in airway. On the other hand, the area of recirculation zone is smaller.

SOME RESULTS OF EVOLUTION OF THE FIRST EIGENVALUE OF WEIGHTED p-LAPLACIAN ALONG THE EXTENDED RICCI FLOW

  • Azami, Shahroud
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.953-966
    • /
    • 2020
  • In this article we study the evolution and monotonicity of the first non-zero eigenvalue of weighted p-Laplacian operator which it acting on the space of functions on closed oriented Riemannian n-manifolds along the extended Ricci flow and normalized extended Ricci flow. We show that the first eigenvalue of weighted p-Laplacian operator diverges as t approaches to maximal existence time. Also, we obtain evolution formulas of the first eigenvalue of weighted p-Laplacian operator along the normalized extended Ricci flow and using it we find some monotone quantities along the normalized extended Ricci flow under the certain geometric conditions.

A Computational Study of Coanda Ejector Flows (코안다 이젝터 유동에 관한 수치해석적 연구)

  • Rajesh G.;Lee J.H.;Kim H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.106-109
    • /
    • 2005
  • The Coanda effect has been used extensively in various aerodynamic applications to improve the system performance. The primary flow in Coanda ejectors is attached to the ejector wall and is expanded inducing a secondary flow. This will probably lead to the mixing of both primary and secondary flows at a down stream section. Very few works have been reported based on the optimization on such devices. The main objective of the present study is to numerically investigate the flow field on a typical Coanda ejector and validate the results with the available experimental data. Many configurations of the Coanda ejector have been analyzed. The effect of various geometric parameters of the device on the expanding mixing layer has also been obtained. The computed data agree fairly well with the experimental data available.

  • PDF

Fluid-structure interactions of physiological flow in stenosed artery

  • Buriev, Bahtiyor;Kim, Tae-Dong;Seo, Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • Atherosclerosis is a disease that narrows, thickens, hardens, and restructures a blood vessel due to substantial plaque deposit. The geometric models of the considered stenotic blood flow are three different types of constriction of cross-sectional area of blood vessel; 25%, 50%, and 75% of constriction. The computational model with the fluid-structure interaction is introduced to investigate the wall shear stresses, blood flow field and recirculation zone in the stenotic vessels. The velocity profile in a compliant stenotic artery with various constrictions is subjected to prescribed physiologic waveform. The computational simulations were performed, in which the physiological flow through a compliant axisymmetric stenotic blood vessel was solved using commercial software ADINA 8.4 developed by finite element method. We demonstrated comparisons of the wall shear stress with or without the fluid-structure interaction and their velocity profiles under the physiological flow condition in the compliant stenotic artery. The present results enhance our understanding of the hemodynamic characteristics in a compliant stenotic artery.