• Title/Summary/Keyword: Geometric Design Parameters

Search Result 411, Processing Time 0.027 seconds

Design Optimization of Centrifugal Pump Impellers in a Fixed Meridional Geometry using DOE

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Yoon, Joon-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.172-178
    • /
    • 2009
  • This paper reports on an investigation (using RSM with commercial CFD software) of the performance characteristics of the impeller in a centrifugal pump. Geometric parameters of vane plane development were defined with the meridional shape and frontal view of the impeller. The parameters are focused on the blade-angle distributions through the impeller in a fixed meridional geometry. For screening, a $2^k$ factorial design has been used to identify the important design parameters. The objective functions are defined as the total head rise and the total efficiency at the design flow-rate. From the $2^k$ factorial design results, it is found that the incidence angles and the exit blade angle are the most important parameters influencing the performance of the pump.

Flutter characteristics of axially functional graded composite wing system

  • Prabhu, L.;Srinivas, J.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.353-369
    • /
    • 2020
  • This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.

Single Phase Switched Reluctance Motor Optimum Design Using Response Surface Methodology and Finite Element Method (반응표면법과 유한 요소법을 이용한 단상 스위치드 릴럭턴스 전동기의 최적 설계)

  • Park Jae-Bum;Lim Seung-Bin;Choi Jae-Hak;Kim Jung-Gyo;Lee Ju;Kim Youn-Hyun;Choi Seung-Kil
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.869-871
    • /
    • 2004
  • This paper presents Single Phase Switched Reluctance Motor Optimum Design using Response Surface Methodology and 2-D Finite Element Method that is coupled with the circuit equation of the rectifier and converter. Moreover, A design process for SPSRM has been proposed. The optimum process has been performed with geometric parameters (${\beta_s}\;&\;{\beta_r}$) that influence the inductance variation for design variables. In this paper, SPSRM performances have been analyzed according to variations of electric and geometric parameters after determining design models in terms of efficiency and power factor maximization.

  • PDF

Exploring geometric and kinematic correspondences between gear-based crank mechanism and standard reciprocating crankshaft engines: An analytical study

  • Amir Sakhraoui;Fayza Ayari;Maroua Saggar;Rachid Nasri
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.97-106
    • /
    • 2024
  • This paper presents a significant contribution to aided design by conducting an analytical examination of geometric links with the aim of establishing criteria for assessing an analogy measure of the extrinsic geometric and kinematic characteristics of the Variable Compression Ratio (VCR) engine with a Geared Mechanism (GBCM) in comparison to the existing Fixed Compression Ratio (FCR) engine with a Standard-Reciprocating Crankshaft configuration. Employing a mechanical approach grounded in projective computational methods, a parametric study has been conducted to analyze the kinematic behavior and geometric transformations of the moving links. The findings indicate that in order to ensure equivalent extrinsic behavior and maintain consistent input-output performance between both engine types, precise adjustments of intrinsic geometric parameters are necessary. Specifically, for a VCR configuration compared to an FCR configuration, regardless of compression ratio and gearwheel radius, for the same crankshaft ratios and stroke lengths, it is imperative to halve lengths of connecting rods, and crank radius. These insights underscore the importance of meticulous parameter adjustment in achieving comparable performance across different engine configurations, offering valuable implications for design optimization.

CFD analysis of geometric parameters that affect dean flow in a helical microchannel

  • Prasad, Bibin;Kim, Jung Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1269-1274
    • /
    • 2014
  • Due to the presence of Dean flow in curved ducts, helical channels have drawn attention recently because of the practical industrial applications. The manipulation of fluids through microfluidic devices is widely used in many scientific and industrial areas. In the present study, numerical simulations were performed on a helical microchannel to predict the impact of different design parameters that affect Dean flow. Important geometric parameters such as the channel cross section, pitch, radius of curvature, and number of turns were considered for the analysis. The study also incorporates the effect of varying flow rate on Dean flows. It was found from the simulation results that microchannel cross section and pitch have a significant impact on maintaining the Dean flow, compared to the radius of curvature, number of turns, and flow rate.

Genetic algorithm-based geometric and reinforcement limits for cost effective design of RC cantilever retaining walls

  • Mansoor Shakeel;Rizwan Azam;Muhammad R. Riaz
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.337-348
    • /
    • 2023
  • The optimization of reinforced concrete (RC) cantilever retaining walls is a complex problem and requires the use of advanced techniques like metaheuristic algorithms. For this purpose, an optimization model must first be developed, which involves mathematical complications, multidisciplinary knowledge, and programming skills. This task has proven to be too arduous and has halted the mainstream acceptance of optimization. Therefore, it is necessary to unravel the complications of optimization into an easily applicable form. Currently, the most commonly used method for designing retaining walls is by following the proportioning limits provided by the ACI handbook. However, these limits, derived manually, are not verified by any optimization technique. There is a need to validate or modify these limits, using optimization algorithms to consider them as optimal limits. Therefore, this study aims to propose updated proportioning limits for the economical design of a RC cantilever retaining wall through a comprehensive parametric investigation using the genetic algorithm (GA). Multiple simulations are run to examine various design parameters, and trends are drawn to determine effective ranges. The optimal limits are derived for 5 geometric and 3 reinforcement variables and validated by comparison with their predecessor, ACI's preliminary proportioning limits. The results indicate close proximity between the optimized and code-provided ranges; however, the use of optimal limits can lead to additional cost optimization. Modifications to achieve further optimization are also discussed. Besides the geometric variables, other design parameters not covered by the ACI building code, like reinforcement ratios, bar diameters, and material strengths, and their effects on cost optimization, are also discussed. The findings of this investigation can be used by experienced engineers to refine their designs, without delving into the complexities of optimization.

Geometric Modeling and Trajectory Control Design for an Excavator Mechanism (굴삭기 작업장치부의 기하학적 동역학 모델링 및 궤적 제어에 관한 연구)

  • Kim, S.H.;Yoo, S.J.;Lee, K.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2007
  • During the last few decades, excavation automation has been investigated to protect the operator from the hazardous working environment and to relieve the cost of the skilled operator. Therefore, a number of modelling and controller design methods of the hydraulic excavator are proposed in many literatures to realize the excavation automation. In this article, a geometric approach far the multi-body system modeling is adopted to develop the excavator mechanism model that contains 4 kinematic loops and 12 links. Considering a simple soil mechanism model with a number of uncertain soil parameters, an adaptive trajectory tracking control strategy based on the developed excavator model is proposed. The improved performance of the designed controller over the simple PID controller is validated via the simulation study.

  • PDF

Optimum Geometric and Electrical Parameter for Minimization Torque Ripple of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화)

  • Choi, Jae-Hak;Kim, Sol;Lee, Kab-Jae;Lee, Ju;Hong, Kyung-Jin;Choi, Dong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.93-100
    • /
    • 2003
  • Switched reluctance motor(SRM) has some advantages such as low cost, high torque density but SRM has essentially high torque ripple due to its salient structure. In order to apply SRM to industrial field, torque ripple has to be reduced. This paper introduces optimal design process of SRM using an optimization algorithm of Progressive Quadratic Response Surface Modeling(PQRSM) and two-dimensional(2D) Finite Element Method(FEM). The electrical and geometrical design parameters have been adopted as 2D design variables. From this work, it can be obtained both the optimal design minimized torque ripple and the optima1 design maximized the average torque, respectively. Finally, this Paper Presents Performance comparison of two optimal designs and consider influence of the selected design variables in torque characteristics.

A Study on the Automated Design System for Gear (기어설계 자동화 시스템에 관한 연구)

  • Cho, H.Y.;Nam, G.J.;Oh, B.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.730-733
    • /
    • 2001
  • A computer aided design system for spur, helical, bevel and worm gears by using AutoCAD system and its AutoLISP computer language was newly developed in this study. Two methods are available for a designer to draw a gear. The first method needs the gear design parameters such as pressure, module, number of tooth, shaft angle, velocity, materials, etc. When the gear design parameters are inputted, a gear is drawn in AutoCAD system and maximum allowable power and shaft diameter are calculated additionally. The second method calculates all dimensions and gear design parameters to draw a gear when the information such as transmission, reduction ratio, rpm, materials and pressure are inputted. The system includes four programs. Each program is composed of a data input module, a database module, a strength calculation module, a drawing module, a text module and a drawing edit module. In conclusion, the CAD system would be widely used in companies to find the geometric data and manufacturing course.

  • PDF

A Study on Automatic Generation for 3-Dimensional Geometry of Gerotor and Hob (제로터와 호브의 3차원 형상 자동 생성에 관한 연구)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.458-463
    • /
    • 1999
  • When designing a gerotor, designers determine basic dimensions of a gerotor with transmitted power considering strength, interference and so on. But, designers can not easily obtain the tooth profile generated by dimensions as well as the geometry of generating hob for cutting the tooth profile. In order to resolve these problems, an automatic design system creating not only the solid model of a gerotor but also that of the generating hob using the design parameters of dimensions is developed. Through the developed system, designers can improve the efficiency of design and satisfy the variable requirements of design as well. In this research, the three-dimensional solid model of gerotor is generated considering the design parameters. Besides, that of generating hob with respect to the design parameters of hob is created automatically. The system is developed using Visual Basic and its three-dimensional geometric modeling module is constructed using SolidWorks.

  • PDF