• Title/Summary/Keyword: Geometric Contact

Search Result 228, Processing Time 0.024 seconds

The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments (Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.295-301
    • /
    • 2000
  • It is known that among many factors, relative micromotion at bone/implant interfaces can hinder bone ingrowth into surface pores of an implant. Loading conditions, mechanical properties of spinal materials, friction coefficients at the interfaces and geometry of spinal segments would affect the relative micromotion and spinal stability. A finite clement model of the human lumbar spine segments (L4-L5) was constructed to investigate the mechanical sensitivity at the interfaces between bone and cage. Relative micromotion. Posterior axial displacement. bone stress, cage stress and friction force were predicted in changes of friction coefficients, loading conditions. bone density and age-related material/geometric properties of the spinal segments. Relative micromotion (slip distance in a static loading means relative micromotion in routine activity) at the interfaces increased significantly as the mechanical properties of cancellous bone, annulus fibers or/and ligaments decrease or/and as the friction coefficient at the interfaces decreases. The contact normal force at the interfaces decreased as cancellous bone density decreases or/and as the friction coefficient increases A significant increase of slip distance at anterior annulus occurred with an addition of torsion to compressive preload. Relative micromotion decreased with an increase of disc area. In conclusion. relative micromotion, stress response. Posterior axial displacement and contact normal force are sensitive to the friction coefficient of the interfaces, bone density, loading conditions and age-related geometric/material changes.

  • PDF

3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal (평면이방성 박판성형공정의 3차원 유한요소해석)

  • 이승열;금영탁;박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

FEM Analysis of Rubber Cover for Automotive Parts (FEM에 의한 자동차부품용 고무커버에 관한 해석)

  • 김상우;김인관;강태호;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.778-781
    • /
    • 2002
  • Durability of rubber dust cover in the ball joint for automotive suspension parts were analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. So in the study, the deformation behavior of dust cover was analysed by using the commercial finite element program MARC. This program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber was modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen, The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber

  • PDF

A Proposal for Generating Good Assembly Sequences by Tournament Tree

  • Tsuboi, Kenji;Matsumoto, Toshiyuki;Shinoda, Shinji;Niwa, Akira
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • In seeking further efficiency in production preparation, it is common to examine assembly sequences using digital manufacturing. The assembly sequences affect the product evaluation, so it is necessary to test several assembly sequences before actual production. However, because selection and testing of assembly sequences depends on the operator's personal experience and intuition, only a small number of assembly sequences are actually tested. Nevertheless, there is a systematic method for generating assembly sequences using a contact-related figure. However, the larger the number of parts, the larger the number of assembly sequences geometric becomes. The purpose of this study is to establish a systematic method of generating efficient assembly sequences regardless of the number of parts. To generate such assembly sequences selectively, a "Tournament Tree," which shows the structure of an assembly sequence, is formulated. Applying the method to assembly sequences of a water valve, good assembly sequences with the same structure as the Tournament Tree are identified. The structure of such a Tournament Tree tends to have fewer steps than the others. As a test, the structure is then applied for a drum cartridge with 38 parts. In all the assembly sequences generated from the contact-related figures, the best assembly sequence is generated by using the Tournament Tree.

Minimum Tooth Number of Elliptical Gears with Involute-Trocoidal Profile (인벌류우트-트로코이드 치형을 갖는 타원계 엽형기어의 최소잇수에 관한 연구)

  • 최상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.85-92
    • /
    • 1998
  • This present paper describes a mathematical model of profile shifted elliptical gears, and this model is based on the concepts of envelope theory and conjugate geometry between the blank and the straight-sided rack cutter. The geometric model of the rack cutter includes working regions generating involute curves and fillets for trocoidal curves, and furthermore the addendum modified coeff. is considered for avoiding undercutting. The addendum modified coeff. is changed linearly along with pitch curves and must be the same absolute value at both major semi-axis and minor semi-axis. If undercutting is at all pronounced, the undercut tooth not only are weakened in strength, but lose a small portion of the involute adjacent to the base circle, then this loss of involute may cause a serious reduction in the length of contact. A very effective method of avoiding undercutting is to use the so-called profile shifted gearing. Non-undercutting condition is examined with the change of eccentricity and addendum modified coeff. in elliptical gears and then the minimum number of tooth is proposed not to gernerate undercutting phenomenon.

  • PDF

A Study on the Minimum Tooth Number of Profile Shifted Elliptical Gears to Avoid Undercutting (언더컷을 고려한 전위 타원계엽형기어의 최소잇수에 관한 연구)

  • 최상훈;이두영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.572-577
    • /
    • 1997
  • This present paper describes a mathematical model of profile elliptical gears, and this model is based on the concepts of envelop theory and conjugate geometry between the blank and the straight-sided rack cutter. The geometric model of the rack cutter includes working regions generating involute curves andd fillets for trocoidal curves, and furthermore the addendum modified coeff,is considered for avoiding undercutting. The addendum modified coeff, is changed linearly along with pitch curves and must be the must be the same absolute value at both major semi-axis and minor semi-axis. If undercutting is at all pronounced, the undercut tooth not only are weakened in strength, but lose a small portion of the involute adjacent to the base circle, then this loss of involute may ncause a serios reduction in the length of contact. A very effective method of avoiding undercutting is to use the so-called profile shifted gearing. Non-undercutting conditon is examined with the change of eccentricity and addendum modefied coeff. in elliptical gears and then the minimum number of tooth is proposed not to gernerate undercutting phenomenon.

  • PDF

Experimental investigation of the large amplitude vibrations of a thin-walled column under self-weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.869-886
    • /
    • 2013
  • This work presents an experimental methodology specially developed for the nonlinear large-amplitude free vibration analysis of a clamped-free thin-walled metal column under self-weight. The main contribution of this paper is related to the developed experimental methodology which is based on a remote sensing technique using a computer vision system that integrates, on-line, the digital image acquisition and its treatment through special image processing routines. The main importance of this methodology is that it performs large deflections measurements without making contact with the structure and thus, not introducing undesirable changes in its behavior, for instance, appreciable changes in mass and stiffness properties. This structure presents, in most cases, highly non-linear responses, which cannot be reproduced by conventional finite-element softwares due, mainly, to the simultaneous influence of geometric and inertial non-linearities. To capture the non-linearities associated with large amplitude vibration and be able to describe the buckling process, the structure is discretized as a sequence of jointed coupled elastic pendulums. The obtained numerical results are favorably compared with the experimental ones, in the pre- and post-buckling regimes.

Effect of Diamine Addition in NaOH Treatment Solution on Surface Characteristics of Poly (Ethylene Terephthalate) Film (NaOH처리시 Poly(ethylene terephthalate)필름의 표면특성에 영향을 주는 Diamine의 첨가효과)

  • Kang, In-Sook;Bae, Hyun-Sook
    • Fashion & Textile Research Journal
    • /
    • v.15 no.2
    • /
    • pp.302-308
    • /
    • 2013
  • This study is a preliminary investigation of the influence of surface characteristics of substrates on detergency of particulate soil. The surface of PET film was modified with NaOH and NaOH+ethylene diamine on different times. The surface morphology of the film was scanned by AFM and surface energies were calculated from measured contact angles between several solutions and film based on the geometric mean and a Lewis acid base method. The surface morphology of PET film treated with NaOH and NaOH+ethylene diamine became more etched, and the surface area, surface roughness and the coefficient of friction of film increased with treatment of NaOH and NaOH+ethylene diamine. The contact angle of film treated with NaOH and NaOH+ethylene diamine decreased in water and surfactant solution; in addition, the surface energy increased was largely attributed to the increased portion on the polar surface energy of film. However, the effect of the diamine addition to the NaOH treatment solution on surface characteristics of PET film was insignificant.

A Medical Palpation Guidance System for Minimally Invasive Surgery using Contact Pressure Distribution (접촉 압력 분포를 이용한 최소 침습 수술을 위한 의료 촉진 가이던스 시스템)

  • Kim, Hyoungkyun;Chung, Wan Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.266-273
    • /
    • 2017
  • In this research a medical palpation guidance system for minimally invasive surgery (MIS) is proposed. Palpation is a useful tool for identifying a size and location of a lump during a surgery. However, conventional manual palpation is only available in open surgery, so there has been several researches about palpation assistant or guidance system for MIS. The previously developed systems are based on a pressure based or stiffness based approach. These previous approaches have some limitations in increasing complexity of the systems and lack of geometric information about the lump which is more important information for the lump removal than the stiffness information. We propose a palpation guidance system using a novel approach using contact pressure distribution. Since our approach gives the geometry information of the lump as well as the existence information, the operator can easily notice the currently identified lump region and the optimal position for the next palpation. The experiment results show that our approach can offer the geometry information of the lump correctly.

Preparation and Characterization of Surface Energy of BPDA-BAPP Polyimide

  • Kim, Kyung-Hoe;Kim, Yong-Gwon;Kwon, Young-Hwan
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.388-396
    • /
    • 2009
  • The surface properties (water sorption and repellency, adhesion) are closely related to the surface tension of polymer solids. The critical surface tension (${\gamma}_c$) and surface tension (${\gamma}_s$) of a polymer solid were estimated by the contact angle method by our quantitative imaging system. BPDA (3,3',4,4'-biphenyl tetracarboxylic dianhydride)-BAPP (1,3-Bis(4-aminophenoxy) propane) polyimide was successfully synthesized. The ${\gamma}_c$ values were analyzed by a Zisman plot, a Young-$Dupr\acute{e}$-Good-Girifalco plot, and a log ($1+cos{\theta}$) vs log ${\gamma}_L$ plot. The ${\gamma}_s$ value of BPDA-BAPE polyimide was evaluated using the geometric mean equation and our multiple regression analysis. The calculated values of ${{\gamma}_s^d$ (a dispersion component), ${{\gamma}_s^p$ (a polar component), ${{\gamma}_s^h$ (a hydrogen bonding component), and ${\gamma}_s$ were 30.79, 9.32, 0.20, and 40.31 $mN{\cdot}m^{-1}$, respectively. The ${\gamma}_s$ of BPDA-BAPP polyimide containing both a methylene group and an ether group was larger than that of the polyimide containing only a methylene group.