데이터 불균형 문제는 분류 및 예측 문제에서 하나의 범주에 속하는 표본의 수가 다른 범주들에 속하는 표본 수에 비하여 현저하게 적을 경우 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류 경계영역이 왜곡되고 결과적으로 분류자의 학습성과가 저하되는 문제가 발생한다. 본 연구에서는 데이터 불균형 문제를 해결하기 위하여 Geometric Mean-based Boosting (GM-Boost) 알고리즘을 제안하고자 한다. GM-Boost 알고리즘은 기하평균 개념에 기초하고 있어 다수 범주와 소수 범주를 동시에 고려한 학습이 가능하고 오분류된 표본에 집중하여 학습을 강화할 수 있는 장점이 있다. 기업부실 예측문제를 활용하여 GM-Boost 알고리즘의 성과를 검증한 결과 기존의Under-Sampling, Over-Sampling 및 AdaBoost 알고리즘에 비하여 우수한 분류 정확성을 보여주었고 데이터 불균형 정도에 관계없이 견고한 학습성과를 나타냈다.
In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.
The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
/
pp.252-259
/
2017
Nowadays, the existing manual method for recording actual progress of the construction site has some drawbacks, such as great reliance on the experience of professional engineers, work-intensive, time consuming and error prone. A method integrating computer vision and BIM(Building Information Modeling) is presented for indoor automatic progress monitoring. The developed method can accurately calculate the engineering quantity of target component in the time-lapse images. Firstly, sample images of on-site target are collected for training the classifier. After the construction images are identified by edge detection and classifier, a voting algorithm based on mathematical geometry and vector operation will divide the target contour. Then, according to the camera calibration principle, the image pixel coordinates are conversed into the real world Coordinate and the real coordinates would be corrected with the help of the geometric information in BIM model. Finally, the actual engineering quantity is calculated.
본 논문에서는 소형 고정익기의 고장 발생시기와 부품 교체시기를 예측하여 유지보수 비용을 절감하고 정비 효율을 높이기 위하여 ANPSD와 PCA, 그리고 GC 방법을 이용하여 조종면의 고장에 대하여 이를 검출하고 위치와 정도를 분리하는 알고리즘을 제안하였다. 이때 ANPSD는 주파수 영역에서의 진동 분석을, PCA는 ANPSD의 중요 정보 추출을, GC는 고장 검출 및 분리 시의 오류 최소화를 위하여 사용되었다. 또한 모형 항공기에 가속도 센서를 부착하여 정상인 경우와 힌지 고장이 발생한 경우에 대하여 실제로 측정한 결과에 이와 같은 알고리즘을 적용한 결과 해당 알고리즘이 고장을 검출하고 분리하는 데에 적합함을 보였으며 제안된 알고리즘을 적용할 경우에 발생 가능한 문제들에 대하여 이를 완화할 수 있는 대응책을 함께 제시하였다.
회사채 신용등급은 투자자의 입장에서는 수익률 결정의 중요한 요소이며 기업의 입장에서는 자본비용 및 기업 가치와 관련된 중요한 재무의사결정사항으로 정교한 신용등급 예측 모형의 개발은 재무 및 회계 분야에서 오랫동안 전통적인 연구 주제가 되어왔다. 그러나, 회사채 신용등급 예측 모형의 성과와 관련된 가장 중요한 문제는 등급별 데이터의 불균형 문제이다. 예측 문제에 있어서 데이터 불균형(Data imbalance) 은 사용되는 표본이 특정 범주에 편중되었을 때 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류경계영역이 왜곡되므로 분류자의 학습성과가 저하되게 된다. 본 연구에서는 데이터 불균형 문제가 존재하는 다분류 문제를 효과적으로 해결하기 위한 다분류 기하평균 부스팅 기법 (Multiclass Geometric Mean-based Boosting MGM-Boost)을 제안하고자 한다. MGM-Boost 알고리즘은 부스팅 알고리즘에 기하평균 개념을 도입한 것으로 오분류된 표본에 대한 학습을 강화할 수 있으며 불균형 분포를 보이는 각 범주의 예측정확도를 동시에 고려한 학습이 가능하다는 장점이 있다. 회사채 신용등급 예측문제를 활용하여 MGM-Boost의 성과를 검증한 결과 SVM 및 AdaBoost 기법과 비교하여 통계적으로 유의적인 성과개선 효과를 보여주었으며 데이터 불균형 하에서도 벤치마킹 모형과 비교하여 견고한 학습성과를 나타냈다.
본 연구는 MLS 데이터로부터 자동으로 철도 시설물들을 인식하여 시설물 간의 기하학적인 공간정보를 추출하는데 기여 하고자 한다. 본 연구에서 제안된 방법은 9개 주요 철도 시설물(노반, 레일, 철로, 수목, 플렛폼, 방음벽, 철주, 절연체, 고압선)들의 분류를 목적으로 하고 있다. 이를 위해 제안된 방법은 크게 두 단계로 나뉘어 진행된다. 첫 번째 단계에서는 포인트, 라인, 체적과 수직 프로파일 레벨에서 데이터의 맥락 특징(contextual feature)들이 추출된다. 두 번째 단계에서는 CRF(Conditional Random Field)가 맥락 분류자(contextual classifier)로 사용되어 각 데이터 포인트에 객체 정보가 할당되고 철도 시설물들이 분류된다. 사용된 CRF 모델은 다른 맥락 분류자 와는 달리 로컬지역에서 데이터들의 분류정보가 일관성을 유지하게 하는 장점이 있다. 제안된 방법의 성능은 commission과 omission 오류분석을 통해 입증되었다.
In order to evaluate the Capability of ETM+ remotely- sensed data to provide 'Forest-shrub land-Rangeland' cover type map in areas near the timberline of northern forests of Iran, the data were analyzed in a portion of nearly 790 ha located in Neka-Zalemroud region. First, ortho-rectification process was used to correct the geometric errors of the image, yielding 0/68 and 0/69 pixels of RMS. error in X and Y axis, respectively. The original and panchromatic bands were fused using PANSHARP Statistical module. The ground truth map was made using 1 ha field plots in a systematic-random sampling grid, and vegetative form of trees, shrubs and rangelands was recorded as a criteria to name the plots. A set of channels including original bands, NDVI and IR/R indices and first components of PCI from visible and infrared bands, was used for classification procedure. Pair-wise divergence through CHNSEL command was used, In order to evaluate the separability of classes and selection of optimal channels. Classification was performed using ML classifier, on both original and fused data sets. Showing the best results of $67\%$ of overall accuracy, and 0/43 of Kappa coefficient in original data set. Due to the results represented above, it's concluded that ETM+ data has an intermediate capability to fulfill the spectral variations of three form- based classes over the study area.
인공위성 데이타 정보의 용용분야는 여러가지가 있으나, 본 연구에서는 LANDSAT MSS데이타와 TM데이타를 처리 분석하여 서울시 토지이용정보를 경년변화에 따라 추출하고자 하였다. 사용 데이터는 MSS(72, 79, 81, 83년), TM(85년)이며 입수된 데이타를 전처리를 통해 기하보정, 디지타이징(행정구역에 따라) 등을 하고, 유효 band 선정 및 filtering을 통하여 정확도를 높인 후 MLC(Maximum Likelihood Classifier)로 토지이용분류를 실시하였다. 토지이용분류시 training field 선정 자료로는 현지조사자료, 지형도, 항공사진을 참조하였고, 분류결과의 정확도는 각각 그 당시의 통계자료를 토대로 하여 비교해 보았다. 분석결과, 서울시의 도시지역은 72년 (25.3 %), 81년 (43.0 %), 85년 (51.9 %)로 증가되었고, 이에 대해 삼림은 72년(39.0 %)에서 85년(28.4 %)로 점차 감소되고 있었다. 이상과 같이 토지이용 경년변화를 추출함으로써 도시의 토지 이용상황 monitoring에는 반복 주기를 가지는 인공위성 데이터의 활용이 경제적이며 효과적임을 알 수 있었다.
Background: Surfactant-containing water sprays are commonly used in coal mines to collect dust. This study investigates the dust collection performance of different surfactant types for a range of coal dust particle sizes and charges. Methods: Bituminous coal dust aerosol was generated in a wind tunnel. The charge of the aerosol was either left unaltered, charge-neutralized with a neutralizer, or positively- or negatively-charged using a diffusion charger after the particles were neutralized. An anionic, cationic, or nonionic surfactant spray or a plain water spray was used to remove the particles from the air flow. Some particles were captured while passing through spray section, whereas remaining particles were charge-separated using an electrostatic classifier. Particle size and concentration of the charge-separated particles were measured using an aerodynamic particle sizer. Measurements were made with the spray on and off to calculate overall collection efficiencies (integrated across all charge levels) and efficiencies of particles with specific charge levels. Results: The diameter of the tested coal dust aerosol was $0.89{\mu}m{\pm}1.45$ [geometric $mean{\pm}geometric$ standard deviations (SD)]. Respirable particle mass was collected with $75.5{\pm}5.9%$ ($mean{\pm}SD$) efficiency overall. Collection efficiency was correlated with particle size. Surfactant type significantly impacted collection efficiency: charged particle collection by nonionic surfactant sprays was greater than or equal to collection by other sprays, especially for weakly-charged aerosols. Particle charge strength was significantly correlated with collection efficiency. Conclusion: Surfactant type affects charged particle spray collection efficiency. Nonionic surfactant sprays performed well in coal dust capture in many of the tested conditions.
본 논문에서는 ASM(Active Shape Model) 특징점(Landmark)을 이용하여 정밀한 얼굴영역을 획득하고, 외형기반 접근법으로 표정을 인식하는 방법에 대하여 제안한다. 외형기반 표정인식은 EHMM(Embedded Hidden Markov Model) 및 이진패턴 히스토그램 특징과 SVM(Support Vector Machine)을 사용하는 알고리즘으로 구성되며, 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었다. 더불어, 성능비교는 기존의 눈 거리 기반의 얼굴 정규화 방법과 비교를 통하여 수행되었고, 또한 ASM 전체 특징점 및 변형된 특징을 SVM으로 인식하는 기하학적 표정인식 방법론과 성능비교를 수행하였다. 실험 결과, 제안 방법은 거리기반 얼굴정규화 영상을 사용한 방법보다 CK 데이터베이스 및 JAFFE 데이터베이스 경우, 최대 6.39%와 7.98%의 성능향상을 보였다. 또한, 제안 방법은 기하학적 특징점을 사용한 방법보다 높은 인식 성능을 보였으며, 이로부터 제안하는 표정인식 방법의 효용성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.