• Title/Summary/Keyword: Geomembranes

Search Result 25, Processing Time 0.024 seconds

Study on the Evolution of Sand Structure during Shearing (전단시험 중 모래입자의 변형에 관한 연구)

  • 이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.289-296
    • /
    • 2000
  • This paper summarizes the results of a study which has quantified the evolution of the structure of sands adjacent to geomembranes of varying roughness at different stages of shearing. The results show that the structure evolution, and hence shear mechanisms for rounded uniform sands adjacent to geomembranes, are directly influenced by the surface roughness of the geomembranes. For smooth geomembranes, the shear mechanism predominantly involves sliding of sand particles and only affects the sand structure within two particle diameters of the geomembrane. For slightly textured geomembranes, the effects of interlocking and dilation of sand particles extends the zone of evolution to four particles diameters from the interface. For moderately/heavily textured geomembranes, the interlocking and dilation of sand particles is fully developed and results in large dilation in the interfacial zone, which extends up to six particle diameters from the interface. By understanding how the structure of the sand adjacent to geomembranes of different roughness changes during shearing, it may be possible to identify alternative geomembrane roughening procedures and patterns that can lead to more efficient interface designs.

  • PDF

Long-Term Performance of Geomembranes by Oxidative Induction Time

  • Jeon, Han-Yong;Kim, Hong-Kwan;Keum, Jae-Ho;Jang, Yong-Chea;Lyoo, Won-Seok;Ghim, Han-Do
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.19-24
    • /
    • 2003
  • Long-term performance of smooth and textured type HDPE geomembranes which were used to the liner and slope systems of waste landfills was examined. Artificial surface defects were added to the surface of geomembranes by scratch addition apparatus specially designed. The mechanical and frictional properties, chemical and ultra violet light resistances and oxidative induction time(OIT) of geomembranes were examined for the cases of defective/non-defective surfaces. Frictional properties of textured type geomembranes showed more excellent than those of smooth type geomembranes. Finally, it was known that the long-term performance of non-defective and textured geomembranes was better than that of defective geomembranes through chemical and UV resistance and OIT tests etc.

  • PDF

The Influence of Surface Roughness on Interface Strength (표면 거칠기 정도가 접촉면 전단력에 미치는 영향)

  • 이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.255-262
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear strength of goomembrane/geotextile interfaces. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

Experimental Study on Shear Mechanism Caused by Textured Geomembrane (돌기형 지오멤브레인에 의한 전단 메카니즘에 관한 실험 연구)

  • 이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.57-68
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear mechanism of geomembrane/geotextile interfaces. The alternative roughness parameters which consider the direction of shearing are described. These directional parameters are compared with the existing roughness parameters, and the relationship between these directional and non-directional parameters are investigated. Then, the relationship between interface shear strength and surface roughness quantified at the interface is investigated. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

The Evaluations of Thermal Stability and Stress Crack Resistance of Geomembranes with Surface Defects in the Landfill (폐기물매립지에서 표면결함이 있는 지오멤브레인의 열적 안정성 및 응력균열저항성 평가)

  • 전한용;이광열;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.53-62
    • /
    • 2001
  • Effects of surface defect on thermal stability and stress crack resistance of high density polyethylene geomembranes in environmental conditions were examined by comparing the mechanical properties, chemical resistance and failure times of geomembranes between defective cases under different temperatures. Artificial surface defects were added to the surface of geomembranes by scratch apparatus designed specially. The number of surface defects was increased with the smaller size of scratch induced particles, and the more scratch addition numbers at the shear rate of scratch induced mechanism, 100mm/min. The tensile strength were decreased but the tensile strain was increased with the above conditions. In chemical resistance of defective geomembranes, the tensile strength were decreased but the tensile strain was increased with the longer immersion period and the higher temperature under the same scratch induced conditions. Finally, failure times of defective geomembranes by ESCR test were shifted to the shorter time ranges by increasing temperatures.

  • PDF

A Study on the Shear Behavior of Sands on the Geomembranes (지오멤브레인 상의 모래의 전단거동에 관한 연구)

  • 이석원
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.89-89
    • /
    • 2000
  • The shear behavior of any interface is a function of the fundamental properties of both materials at the interface. This study aimed at investigating the effect of planar surface roughness on the stress-horizontal displacement curve at theinterfaces composed of various geomembrane textures and granular materials. In addition, the extent of surfacialscarring on smooth geomembranes against granular materials during shearing induced by plowing effect was studied. It wasobserved that the displacements required to achieve peak and residual interface resistance, and the stress-displacementcurve at the interface vary greatly with the surface roughness of geomembrane. Quantification of surface roughnessvariations on smooth geomembrane due to plowing effect showed that the surfacial scarring during shearing by the soilparticles is directly related to both the normal stress and the angularity of the soil particles at the interface. The findingsof this study can be used to provide the useful information for the design and selection of counterface materials.

Interpretation of Stress Crack Resistance of Damaged Geomembranes (손상된 지오멤브레인의 응력균열 저항성 해석)

  • Jeon, Han-Yong;Kahn, Belas Ahmed;Jang, Yeon-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.305-313
    • /
    • 2010
  • HDPE smooth and textured GMs were cut into dumbbell shape and notched where depth of the notch produced a ligament thickness of 90% to 10% of the nominal thickness of the specimen at 10% interval. Yield stress and elongation were measured of those samples and plotted on Graph. Yield stress and elongation at yield point decreases gradually as the notch depth is increased. Both installations damaged and notched GMs were used to understand stress crack behavior. Intact sample were notched in such a manner that the depth of notch produced a ligament thickness of 80% of the nominal thickness of the specimen. Installation damaged samples were not notched. Stress Crack Resistance behavior was observed using NCTL Test at $50{\pm}1^{\circ}C$ at different yield stresses immerging with pH 4 and pH 12 buffer solutions. Significant difference was observed in both cases.

  • PDF

Stress-Strain of Geomembranes In Landfill Under Punctiform Loads (폐기물매립장 차수재의 꿰뚫림 하중에 의한 응력-변형)

  • 이광열;정진교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.55-65
    • /
    • 2001
  • Geotextiles are usually constructed as a protective layer of geomembranes in liner systems for the solid waste landfill. A protective layer and geomembrane are susceptible to mechanical damage by coarse grains in the overlying drainage layer. In this study, therefore, the strain behavior of geotextile protective layers was investigated using three different types of devices for developing punctiform loads. The results of the study showed that the rates of strain was different depend upon device types for functiform loads. Also, It was found that the increases in strain was approximately linear in range 20 to 6$0^{\circ}C$ , and pp-filament non-woven geotextiles yielded a better efficiency than pp-staple fiber non-woven geotextiles.

  • PDF