• Title/Summary/Keyword: Geological process

Search Result 367, Processing Time 0.024 seconds

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Site Selection Process for Spent Fuel in Finland

  • Auvinen, Anssi;Lehtonen, Aleksis;Riekkola, Reijo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.179-181
    • /
    • 2009
  • This presentation is a short summary of the Finnish process for selection and characterisation of potential sites for geological deep disposal of spent nuclear fuel. The process lasted nearly two decades from 1983 to 2000, and was concluded by the Government's Decision in Principle (DiP) on the construction of a repository in Olkiluoto. This presentation gives an outline of the early site selection criteria and a description of this process.

  • PDF

Deriving geological contact geometry from potential field data (포텐셜 필드 자료를 이용한 지짙학적 경계 구조 해석)

  • Ugalde, Hernan;Morris, William A.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2010
  • The building process of any geological map involves linking sparse lithological outcrop information with equally sparse geometrical measurements, all in a single entity which is the preferred interpretation of the field geologist. The actual veracity of this interpretative map is partially dependent upon the frequency and distribution of geological outcrops compounded by the complexity of the local geology. Geophysics is commonly used as a tool to augment the distribution of data points, however it normally does not have sufficient geometrical constraints due to: a) all geophysical inversion models being inherently non-unique; and b) the lack of knowledge of the physical property contrasts associated with specific lithologies. This contribution proposes the combined use of geophysical edge detection routines and 'three point' solutions from topographic data as a possible approach to obtaining geological contact geometry information (strike and dip), which can be used in the construction of a preliminary geological model. This derived geological information should first be assessed for its compatibility with the scale of the problem, and any directly observed geological data. Once verified it can be used to help constrain the preferred geological map interpretation being developed by the field geologist. The method models the contacts as planar surfaces. Therefore, it must be ensured that this assumption fits the scale and geometry of the problem. Two examples are shown from folded sequences at the Bathurst Mining Camp, New Brunswick, Canada.

Development of Investigation and Analysis Technique to Landslides and Its Application (산사태 조사.해석 기법의 개발 및 적용)

  • Kim, Kyeong-Su;Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.69-81
    • /
    • 2008
  • Landslide researches are divided to a method of interrelationship for various factors, method of predicting landslide possibility, and method of estimating landslide risk which are occurring landslides in the natural slope. Most of landslides occurred in natural slope are caused by a heavy rainfall in summer season. Weathered soil layer located in upper side of rock mass was occurred. As well as, they are announced to have an influence to geometry, geology, soil characteristics, and precipitation in the natural slope. In order to investigate and interpret the variety of landslides from field investigation to risk analysis, landslide analysis process due to geotechnical and geological opinions are systematically demanded. In this research, the study area is located in Macheon area, Gyeongsangnam-do and performed the landslide investigation. From the results of landslide investigation and analysis, optimized standard model based on natural landslide is proposed to high technical method of landslide investigation and interpretation.

International Symposium and Collaborative Study on Deep Cement Mixing, Okinawa 2009 (2009 오키나와 Deep Mixing 심포지엄 및 공동연구)

  • Jeong, Gyeong-Hwan;Shin, Min-Shik;Han, Gyeong-Tae;Lee, Jung-Hwa;Kim, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.972-978
    • /
    • 2008
  • Quality Assurance of Deep Mixing to fulfill the requirements of geotechnical design cannot be achieved only by the process control During production conducted by the deep mixing contractor but it should involve relevant activities that are carried out prior to, during and after the construction by all the parties involved in a deep mixing project. The requirement is different for different application, and hence, QA/QC method/procedure and verification technique may be different for different application. In order to maintain the high quality of deep mixing work in the global market, it is necessary to conduct a research project, such as investigation of illustrations, the variety of existing QA/QC methods/procedures, the correlation between the outcomes of different QA/QC methods. In these reason, it has been held the international meeting to discuss them, in that kind of activities in 2009 it will be held Symposium. Also Collaborative study for QA/QC is on goin, and conduction by all participated members. The subject for collaborative study are, task 1 : investigation of laboratory tests procedures, task 2 : comparing of different laboratory tests procedures, task 3 : QA/QC method/procedures, task 4 : integrated Task1 ~task 3. The discussion of the results in all task will be held in the Symposium separately. In this paper, it was presented four tasks. Also the results in task 1 and 2 conducting domestically until now, such as investigation of laboratory test procedures, effect on the unconfined compressive strength by aging temperature and by delayed time.

  • PDF

Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry

  • Mu, Wenqiang;Li, Lianchong;Liu, Xige;Zhang, Liaoyuan;Zhang, Zilin;Huang, Bo;Chen, Yong
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-369
    • /
    • 2020
  • Different from the conventional planar fracture and simplified Newton model, for power-law slurries with a lower water-cement ratio commonly used in grouting engineering, flow model in geological rough fractures is built based on ten standard profiles from Barton (1977) in this study. The numerical algorithm is validated by experimental results. The flow mechanism, grout superiority, and water plugging of pseudo plastic slurry are revealed. The representations of hydraulic grouting properties for JRCs are obtained. The results show that effective plugging is based on the mechanical mechanisms of the fluctuant structural surface and higher viscosity at the middle of the fissure. The formulas of grouting parameters are always variable with the roughness and shear movement, which play a key role in grouting. The roughness can only be neglected after reaching a threshold. Grouting pressure increases with increasing roughness and has variable responses for different apertures within standard profiles. The whole process can be divided into three stationary zones and three transition zones, and there is a mutation region (10 < JRCs < 14) in smaller geological fractures. The fitting equations of different JRCs are obtained of power-law models satisfying the condition of -2 < coefficient < 0. The effects of small apertures and moderate to larger roughness (JRCs > 10.8) on the permeability of surfaces cannot be underestimated. The determination of grouting parameters depends on the slurry groutability in terms of its weakest link with discontinuous streamlines. For grouting water plugging, the water-cement ratio, grouting pressure and grouting additives should be determined by combining the flow conditions and the apparent widths of the main fracture and rough surface. This study provides a calculation method of grouting parameters for variable cement-based slurries. And the findings can help for better understanding of fluid flow and diffusion in geological fractures.

Exploring Learning Effects of Elementary School Students Engaging in the Development of Geological Virtual Field Trips (가상 야외지질답사 모듈 개발에 참여한 초등학생들의 학습 효과 탐색)

  • Choi, Yoon-Sung;Kim, Jong-Uk
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.2
    • /
    • pp.171-191
    • /
    • 2022
  • The purpose of this study is to explore inductively learning effects of virtual field trips(VFTs) programs developed by elementary school students under the theme of minerals and rocks, focusing on learning in virtual geological components. Ten students attending 'H' elementary school in the metropolitan area voluntarily participated. In order to develop a virtual field trips programs, pre-actual outdoor geological field trips were conducted and virtual field trips programs were developed. In this process, written data of students observing, all video recording and voice recording materials of the course in which students participated, VR development data, and post-interview data were collected. Data were inductively analyzed focusing on four areas(cognitive, psychological, geography, and technical components) of learning in virtual geological field trips. As a result, there were positive learning effects for students in four areas. This study revealed that the study participants were not just participants in virtual learning, but rather developed classes for virtual field trips programs, which had significant results in terms of authentic inquiry.

Prediction of Long-term Behavior of Tunnel in the Presence of Geological Anomalies (지질이상대가 존재하는 구간에서의 터널의 장기거동 예측)

  • Hoki Ban;Heesu Kim;Jungkuk Kim;Donggyou Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.8
    • /
    • pp.13-20
    • /
    • 2023
  • Tunnelling through the geological anomalies has widely known to have many difficulties such as bottom heave, crack of lining, squeezing and so on. To stabilize the tunnel during the construction or after construction, various reinforcing methods have been introduced and applied such as micropiling at the bottom of tunnel to prevent the bottom heave. In this study, long-term behavior of tunnel in the presence of geological anomalies was predicted using numerical analyses. To this end, material properties for swelling rock model capable of representing the rock swelling behavior was obtained using matching process with measured data to validate the adopted model. After the model validation, simulations were performed to predict the long-term behavior of tunnel in the geological anomalies.

Concept of the Encapsulation Process and Equipment for the Spent Fuel Disposal (심지층 처분을 위한 사용후핵연료 포장공정 장비개념 설정)

  • Lee J.Y.;Choi H.J.;Cho D.K.;Kim S.K.;Choi J.W.;Hahn P.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.470-473
    • /
    • 2005
  • Spent nuclear fuels are regarded as a high level radioactive waste and they will be disposed in a deep geological repository. To maintain the safety of the repository for hundreds of thousands of years, the spent fuels are encapsulated in a disposal canister and the canister containing spent fuels should have the structural integrity and the corrosion resistance below the several hundreds meters from the ground surface. In this study, the concept of the spent fuel encapsulation process and the process equipment fur deep geological disposal were established. To do this, the design requirements, such as the functions and the spent fuel accumulations, were reviewed. Also, the design principles and the bases were established. Based on the requirements and the bases, the encapsulation process and the equipment from spent fuel receiving process to transferring canister into the underground repository including hot cell processes was established. The established concept of the spent fuel encapsulation process and the process equipment will be improved continuously with the future studies. And this concept can be effectively used in implementing the reference repository system of our own case.

  • PDF

Forecasting tunnel path geology using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ali, Hunar Farid Hama;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.359-374
    • /
    • 2022
  • Geology conditions are crucial in decision-making during the planning and design phase of a tunnel project. Estimation of the geology conditions of road tunnels is subject to significant uncertainties. In this work, the effectiveness of a novel regression method in estimating geological or geotechnical parameters of road tunnel projects was explored. This method, called Gaussian process regression (GPR), formulates the learning of the regressor within a Bayesian framework. The GPR model was trained with data of old tunnel projects. To verify its feasibility, the GPR technique was applied to a road tunnel to predict the state of three geological/geomechanical parameters of Rock Mass Rating (RMR), Rock Structure Rating (RSR) and Q-value. Finally, in order to validate the GPR approach, the forecasted results were compared to the field-observed results. From this comparison, it was concluded that, the GPR is presented very good predictions. The R-squared values between the predicted results of the GPR vs. field-observed results for the RMR, RSR and Q-value were obtained equal to 0.8581, 0.8148 and 0.8788, respectively.